

Joey D'Antoni, Louis Davidson, Allan Hirt, John Martin,
Anthony Nocentino, Tim Radney, and Randolph West

A hands-on guide to provisioning Microsoft
SQL Server on Azure VMs

SQL Server on Azure
Virtual Machines

SQL Server on Azure Virtual Machines

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Joey D'Antoni, Louis Davidson, Allan Hirt, John Martin, Anthony Nocentino,
Tim Radney, and Randolph West

Managing Editors: Aditya Datar and Siddhant Jain

Acquisitions Editor: Alicia Wooding

Production Editors: Ganesh Bhadwalkar and Deepak Chavan

Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Ian Hough, and Dominic Shakeshaft

First Published: June 2020

Production Reference: 1010620

ISBN: 978-1-80020-459-1

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Foreword i

Preface iii

Chapter 1: Introduction to SQL Server on
Azure Virtual Machines 1

Introduction .. 1

The Azure SQL portfolio .. 3

SQL Server on Azure Virtual Machines ... 5

Azure SQL Managed Instance .. 6

Azure SQL Database ... 8

SQL Server in Azure comparisons ... 10

SQL Server 2019 highlights ... 11

Intelligence over all of your data .. 11

Enhancements in developer experience .. 12

Performance enhancements ... 13

Security improvements .. 14

High Availability/Disaster Recovery (HADR) .. 14

Platform of choice ... 15

SQL Server IaaS scenarios and use cases ... 16

Lift and Shift .. 17

Extending your on-premises environment to the cloud .. 17

Development and test environments .. 18

Choosing an OS for SQL Server in Azure VMs ... 18

Reasons to choose either Windows or Linux for SQL Server 19

Differences between SQL Server on Linux and Windows 20

Summary ... 23

Chapter links .. 24

Chapter 2: Getting started with SQL Server on
Azure Virtual Machines 29

The benefits of deploying SQL Server using IaaS ... 30

Deployment choices for IaaS .. 31

Deployment methods ... 31

Common Azure VM deployment considerations for SQL Server 40

Licensing SQL Server in Azure ... 40

Azure VM hardware options ... 42

VM types and sizes .. 42

Storage ... 45

Summary ... 49

Chapter links .. 50

Chapter 3: Hero capabilities of SQL Server on
Azure Virtual Machines 53

Understanding platform availability in Azure .. 54

Availability Zones .. 56

Availability sets ... 57

Disaster recovery options for SQL Server in Azure ... 58

Beyond backups .. 59

Always On availability groups ... 60

Differences with availability groups in Azure .. 62

Availability groups for read-scale workloads .. 63

SQL Server on Azure VM resource provider .. 63

Performance optimized storage configuration ... 66

SQL Server performance in Azure VMs ... 67

Azure Storage .. 68

Disk layout for SQL Server on Azure ... 69

Backups .. 70

Gathering performance information ... 71

Query Store .. 71

Azure portal ... 73

Activity Monitor ... 74

Extended Events .. 75

Identifying disk performance issues with SQL Server .. 77

Key performance features in SQL Server ... 77

Security concepts ... 78

Connecting to Azure VMs ... 78

Network security groups ... 79

Azure Security Center ... 80

Authentication .. 81

SQL Server security ... 82

Advanced data security for SQL Server on Azure VMs .. 82

Azure Active Directory .. 83

Azure Key Vault ... 84

Transparent data encryption .. 84

Always Encrypted .. 86

Dynamic data masking ... 88

Azure Disk Encryption .. 88

Auditing .. 89

Data Discovery and Classification ... 89

Summary ... 89

Chapter links .. 90

Chapter 4: SQL Server on Linux in Azure Virtual Machines 93

SQL Server on the Linux development ecosystem .. 94

Open-source development frameworks and tooling for
SQL Server on Linux in Azure Virtual Machines .. 94

The extensibility framework and language extensions ... 95

Object-relational mapping (ORM) frameworks ... 96

Cross-platform tooling ... 96

Graphical tools ... 97

Command-line tools .. 98

Platform deployment and management for SQL Server in Azure 98

Supported base operating systems for running SQL Server on
Linux in Azure IaaS VMs .. 100

Using an Azure Marketplace image with SQL Server on Linux pre-installed 100

Using a Linux Azure Marketplace image and installing
SQL Server on Linux manually .. 101

Container-based deployments for SQL Server on Linux in Azure 101

Running multiple SQL Server containers on an IaaS VM in Azure 102

Container images available for SQL Server on Linux ... 102

Starting a container running SQL Server on Linux ... 104

Deploying SQL Server in containers in Azure .. 105

So many choices: which platform should you choose? 105

Which base operating system? .. 105

How should you choose between containers and VMs? 106

Why should you do this in Azure? ... 107

Summary ... 108

Chapter links .. 109

Chapter 5: Performance 113

Performance best practices ... 114

Virtual Machine Storage ... 115

Memory .. 116

CPU ... 118

SQL Server configuration ... 119

Dynamic management views (DMVs) and Query Store 120

How to optimize SQL Server on Linux ... 121

Azure BlobCache .. 121

Summary ... 122

Chapter links .. 123

Chapter 6: Moving workloads to SQL Server on
Azure Virtual Machines 125

Migration tools and best practices .. 126

Best practices .. 127

Migration and analysis tools ... 129

Migrating databases to the cloud ... 138

Application considerations ... 143

Reporting in the cloud—Power BI .. 144

Summary ... 150

Chapter links .. 151

Chapter 7: Hybrid scenarios (Microsoft SQL IaaS) 153

What is Azure Hybrid Benefit? .. 154

What is disaster recovery? .. 155

Recovery point objective .. 156

Recovery time objective ... 157

Accelerated database recovery ... 157

How does licensing influence disaster recovery? ... 158

Backing up databases to a URL .. 159

How to back up to a URL .. 159

Use cases for SQL Server on Azure VMs .. 160

As a backup-restore target .. 160

As an availability group replica ... 161

As a transactional replication subscriber .. 162

Hybrid scenarios .. 163

Scenario 1: Read scale workloads ... 163

Scenario 2: Migrating a workload ... 165

Scenario 3: Disaster recovery .. 166

Summary ... 167

Chapter links .. 168

Appendix A 171

Index 177

Foreword

>
SQL Server on Azure Virtual Machines combines the industry-leading performance
and analytics of SQL Server with the security and flexibility of Azure. It is a common
destination for lift-and-shift SQL migrations to the cloud while maintaining full SQL
Server compatibility and operating system–level access.

The intention of this book is to be a technical guide for SQL Server on Azure Virtual
Machines, Microsoft's infrastructure as a service (IaaS) offering for SQL Server. The
book begins with an overview of Microsoft's Azure SQL family of SQL Server–related
data services in the cloud. Tips for getting started and hero capabilities are discussed
before deep dives into security, Linux, and performance. Finally, best practices are
shared for cloud migrations and hybrid scenarios across on-premises and cloud
environments.

Each chapter was written by Microsoft Data Platform MVPs and brings their unique
perspective, with input from Microsoft Engineering subject matter experts.

About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

Preface

>

iv | Preface

About SQL Server on Azure Virtual Machines
Deploying SQL Server on Azure virtual machines allows you to work on full versions of
SQL Server in the cloud without having to maintain on-premises hardware.

The book begins by introducing you to the SQL portfolio in Azure and takes you
through SQL Server IaaS scenarios, before explaining the factors that you need to
consider while choosing an OS for SQL Server in Azure VMs. As you progress through
the book, you'll explore different VM options and deployment choices for IaaS and
understand platform availability, migration tools, and best practices in Azure. In later
chapters, you'll learn how to configure storage to achieve optimized performance.
Finally, you'll get to grips with the concept of Azure Hybrid Benefit and find out how
you can use it to maximize the value of your existing on-premises SQL Server.

By the end of this book, you'll be proficient in administering SQL Server on Microsoft
Azure and leveraging the tools required for its deployment.

About the Authors

Louis Davidson (Chapter 1, Introduction to SQL Server on Azure Virtual Machines)

Louis Davidson is a data architect for CBN in Virginia Beach, VA; telecommuting for
many years from Cleveland, TN (which is not even as glamourous as it sounds.) Louis
has written and contributed to many books on SQL Server topics over the past 20 years.
His most prominent work has been five editions of his book entitled: "Pro SQL Server
Relational Database Design and Implementation" for Apress in 2016, with a new version
forthcoming in 2020. Louis has been a speaker at many SQL Saturday events, and has
helped organize events in Nashville and Chattanooga, TN.

Allan Hirt (Chapter 2, Getting started with SQL Server on Azure Virtual Machines)

SQLHA, LLC founder, consultant, trainer, author, and business continuity,
infrastructure, and virtualization expert Allan Hirt has been working with SQL Server
since 1992 when it was still a Sybase product as well as clustering in Windows Server
since the late 1990s when it was known as Wolfpack. Currently a dual Microsoft MVP
(Data Platform; Cloud and Datacenter Management) as well as a VMware vExpert, Allan
works with all sizes of customers no matter if they are on premises or in the public
cloud and delivers training and speaks at events over the world.

About SQL Server on Azure Virtual Machines | v

Joey D'Antoni (Chapter 3, Hero capabilities of SQL Server on Azure Virtual Machines)

Joseph D'Antoni is a Principal Consultant at Denny Cherry and Associates Consulting.
He is recognized as a VMWare vExpert and a Microsoft Data Platform MVP and has over
20 years of experience working in both Fortune 500 and smaller firms. He has worked
extensively on database platforms and cloud technologies and has specific expertise in
performance tuning, infrastructure, and disaster recovery.

Anthony Nocentino (Chapter 4, SQL Server on Linux in Azure Virtual Machines)

Anthony Nocentino is the Founder and President of Centino Systems as well as a
Pluralsight author and a Microsoft Data Platform MVP, Linux Expert, and Corporate
Problem Solver. Anthony designs solutions, deploys the technology, and provides
expertise on system performance, architecture, and security. Anthony has a Bachelors
and Masters in Computer Science with research publications in high performance/
low latency data access algorithms and spatial database systems. You can find him on
Twitter @nocentino.

Tim Radney (Chapter 5, Performance)

Tim is a Data Platform MVP. He has presented at PASS, SQLintersection, Microsoft
Ignite, SQL Saturdays, user groups and numerous webinars. In addition, Tim runs
the Columbus GA SQL Users Group, is a PASS Regional Mentor and was named a
PASS Outstanding Volunteer. He's married with three children and has a passion for
electronics. He also farms chickens, crops, and tilapias in his spare time.

John Martin (Chapter 6, Moving workloads to SQL Server on Azure Virtual Machines)

John is an experienced data platform professional having spent over a decade working
with the Microsoft data and cloud platform technologies. In this time John has learned
how to get the most out of these platforms as well as the key pitfalls that should be
avoided.

Randolph West (Chapter 7, Hybrid scenarios (Microsoft SQL IaaS))

Randolph West, founder of Born SQL, is an independent IT consultant, speaker, Calgary
PASS user group leader, Microsoft Data Platform MVP, and lead author of the book
SQL Server 2019 Administration Inside Out. Randolph specializes in SQL Server
performance tuning, disaster recovery, and migrations from really old versions, with
an emphasis on implementing best practices. Randolph has presented at PASS Summit,
SQLBits, SQL Saturdays, and user groups. You can also find Randolph acting and
directing on screen or the stage, or annoying people on Twitter. Do not trust Randolph
around chocolate.

vi | Preface

Learning Objectives

By the end of this book, you will be able to:

• Choose an operating system for SQL Server in Azure VMs

• Use the Azure Management Portal to facilitate the deployment process

• Verify connectivity and network latency in cloud

• Configure storage for optimal performance and connectivity

• Explore various disaster recovery options for SQL Server in Azure

• Optimize SQL Server on Linux

• Discover how to back up databases to a URL

Audience

SQL Server on Azure Virtual Machines is for you if you are a developer, data enthusiast,
or anyone who wants to migrate SQL Server databases to Azure virtual machines. Basic
familiarity with SQL Server and managed identities for Azure resources will be a plus.

Approach

This book incorporates every aspect of SQL deployment on Azure with a perfect blend
of theory and hands-on coding. Each chapter is designed to build on the learnings of
the previous lesson.

Hardware and Software Requirements

For the optimal experience, we recommend the following configuration:

For Windows:

• Processor: Minimum: x64 Processor: 1.4 GHz

Recommended: 2.0 GHz or faster

• Memory: Minimum 2GB RAM

• Storage: 8 GB available space

For Linux:

• Processor: x64 Processor compatible only: 2 GHz 2 cores

• Memory: Minimum 2GB RAM

• Storage: 6 GB available space

About SQL Server on Azure Virtual Machines | vii

Conventions

Code words in the text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

The following code shows how to generate a list of container images available for Red
Hat Enterprise Linux (output abbreviated):

curl -sL https://mcr.microsoft.com/v2/mssql/rhel/server/tags/list

"2019-CU1-rhel-7.6"

"2019-CU1-rhel-8"

"2019-GA-rhel-7.0"

"2019-GA-rhel-7.6"

"2019-GDR1-rhel-7.0"

"2019-GDR1-rhel-7.6

"2019-latest"

"latest"

"vNext-CTP2.0"

Note

All the bitly links are listed at the end of each chapter.

Introduction
In this chapter, we introduce the relational SQL Server products that you can use in
Azure to store and process transactional data in a relational format, which is to say data
stored in tables and columns. To get started on this discussion, there are a few terms
and concepts that are important to understand.

The concepts of platform as a service (PaaS) and infrastructure as a service (IaaS) can
be confusing and are used constantly when discussing services that allow you to build
software on a cloud service. The fundamental distinction between the two lies in how
managed the offering is. A service being managed means that the provider handles
some amount of the operation (or management) of the service. When you install an
operating system and SQL Server on your on-premises computer, you manage the
entire hardware and software infrastructure yourself. This starts with making sure the
server is plugged in and everything else moves from there. PaaS and IaaS both indicate
managed services because the resources you use will be managed to some extent.

Introduction to SQL
Server on Azure

Virtual Machines

1
By Louis Davidson

2 | Introduction to SQL Server on Azure Virtual Machines

PaaS indicates that you are getting a platform to work with, and more of the
management tasks such as software patching, performance tuning, backups, and fault
tolerance will be handled by Azure. The goal is to let you focus on providing business
value and leave the day-to-day operations to Microsoft. How much of the management
is done for you is based on the features of the offering, but as an example, each of the
PaaS offerings we will introduce will handle backups of your data without you or your
customer thinking too much about it, until you find the need to restore your data.

The IaaS model primarily provides management of the hardware and network. You
never need to, and never can, touch any of the physical resources or even access the
location of the server. Just like when you get a new computer, an IaaS server may
have software pre-installed for you, but once you take over the computer, managing
and configuring the software and hardware is up to you. The Azure IaaS platform for
SQL Server does include tools to help you automate the management of the software,
giving you some of the characteristics of the PaaS model, but these tools will not be as
controlled in the IaaS model as they will in a PaaS-model server.

A managed database service does not indicate that the Azure platform will change
the meaning of any data or code you have written; in fact, it's quite the opposite. This
is still part of what your organization needs to do. No changes will be made to your
system that change the meaning of the structures you create. You will simply need to
be less concerned with day-to-day processes that are common to pretty much every
organization.

This book largely focuses on the IaaS offering using SQL Server on Azure Virtual
Machines, though we will introduce the PaaS offerings for contrast. The rest of this
chapter will introduce the Azure SQL offerings, the newest features in SQL Server 2019,
and the value of using SQL Server in its IaaS configuration.

The Azure SQL portfolio | 3

The Azure SQL portfolio
Microsoft Azure SQL is a modern SQL portfolio of offerings for storing relational
data as a service. It is powered by the industry-leading SQL Server engine, which has
evolved greatly over the years, retaining backward compatibility at the code level and
continuing to provide monumental leaps in performance and storage capacity version
over version. Some of the Azure SQL offerings are evergreen, meaning the offering
is always up to date with the latest updates and patches. Because each offering is
essentially based on the same SQL Server code, database administrators (DBAs) and
developers can often use the tools and resources they are already familiar with from
their past SQL Server experience, including graphical, command-line, and T-SQL–based
tools, for much of the work they need to do.

For many organizations, having to build, house, and manage hardware and software is a
large burden for a variety of reasons, but in most cases, cost and security are the most
important. Beyond the easily quantified cost of purchasing hardware and software,
there are costs in finding qualified persons to manage the hardware, operating systems
(OSes), and database platform, all before considering the day-to-day operations such as
tuning queries and executing backups.

Using the Azure platform, upgrades to VM type and size can be done by a simple UI
operation rather than buying new hardware, configuring it, and migrating all of your
data onto it (that process may still occur, but your experience is often checking a box or
sliding a slider on a web page and letting the automation do the work for you.)

The second reason is the most important: security. What all the data breaches in recent
history have demonstrated is that most databases are accessible from the internet in
some manner. Having the management and security of your infrastructure in the hands
of a company such as Microsoft pushes the technology burdens of a very large part of
securing your data onto them. You can take comfort in the fact that the entire Azure
business model rests on the security of all its customers' data, including yours. It will
still be your responsibility to build proper security principals with adequate passwords
and two-factor authentication, as no security will stop a user with proper credentials
from accessing your online resources.

4 | Introduction to SQL Server on Azure Virtual Machines

Azure has multiple other database management systems in the Data Platform portfolio
for different types of database needs, including Cosmos DB1, and Synapse Analytics2,
to name a few. Here's a full list of current products in the Azure family of services3.
Note that Synapse Analytics uses relational tables, but it is focused on large-scale,
specialized analytics. This chapter focuses solely on the relational SQL Server–based
offerings (Azure also has relational database offerings such as MySQL4, PostgreSQL5,
and MariaDB6).

The Azure SQL portfolio provides a consistent and unified management experience
spanning three SQL Server offerings in Azure, each with its own targeted use cases.
Almost any of the offerings will be perfectly acceptable to provide support for
transaction processing (commonly referred to as online transaction processing
(OLTP)) as well as most analytics (reporting) scenarios. Each offering is positioned to
provide different levels of service, as we will discuss. The three offerings we will discuss
specifically are:

• SQL Server on Azure Virtual Machines.

• Azure SQL Managed Instance.

• Azure SQL Database.

Note

There is one additional method of deployment using containers that we will
not be specifically covering in this book. The container method is very similar in
functionality to the VM deployment, except the VM is replaced by a lightweight,
GUI-free container running Linux or Windows using Kubernetes or Docker.

In the following sections, we will introduce each of these offerings to provide you with
an overview of their strengths and ideal usages. Each of the offerings provides you
with the same SQL Server relational engine internals for storing and querying data
using T-SQL. Each will have the same data manipulation language (DML), with only
minor differences in data definition language (DDL) due to physical implementation
differences. While some of the management tools and methods supported by each
platform are different, the primary difference is based on how managed the service is.

https://bit.ly/2XiCe5Y
https://bit.ly/3g8G8Hh
https://bit.ly/2TqJ4Fl
https://bit.ly/2ZmMaOw
https://bit.ly/36gBLFq
https://bit.ly/36ifoiT

The Azure SQL portfolio | 5

SQL Server on Azure Virtual Machines

SQL Server on Azure Virtual Machines7 (or Azure SQL VMs for short) and indeed
any of the Azure Virtual Machines offerings are considered IaaS. This is because
Microsoft manages the hardware infrastructure, but you manage the software. As the
DBA managing the server, it is generally no different than managing SQL Server on a
computer that resides in your own server room.

When you create an Azure SQL VM, you are given the opportunity to use a pre-built
VM image that has a supported version of SQL Server pre-installed, or you can choose
to bring your own media to install from. There are licensing differences and benefits to
both models, but we will not even begin to try to cover licensing in this book. Here are
some more insights offered by Microsoft on Azure VM licensing8.

Whether you use a pre-built image or bring your own software, the VM can take
advantage of some automation by using the SQL Server IaaS Agent Extension (not
currently available on an Azure VM running Linux at the time of this book's publishing),
which provides automated backup and patching capabilities, as well as configuration
assistance with Azure Key Vault integration to store encryption keys outside of SQL
Server. You are also fully able to use any method you wish for these tasks, including SQL
Server Maintenance Plans or even third-party backup scripts and tools. Some additional
tooling may be necessary in any case, because backups are just part of the regular
upkeep needed for a healthy database that is even lightly used. The Agent Extension
(along with several other features) is enabled automatically when using a pre-built
image, or by registering9 your VM with the SQL VM resource provider.

It is important to catch the distinction between automation and a managed service.
Automation provides tools that you can use to make managing your server easier.
With the PaaS model of the next two Azure offerings, you don't need to monitor to see
whether backups have failed, nor do you even need to do anything to ensure that your
server is backed up. The Azure platform management system backs up your server
based on the settings you choose (and you can't even accidentally choose not to back
up at all either). With IaaS, only the hardware is truly managed by Microsoft. It is your
responsibility to back up your databases and make sure those backups can be restored,
even when using the SQL Server IaaS Agent Extension.

Note

Managing and supporting are two different concepts. A supported service means
the host will help you if the software is not working properly. A managed service
will have the host in charge of making sure things work properly based on your
configuration.

https://bit.ly/36pvzLC
https://bit.ly/3e4YxTp
https://bit.ly/2Xc8GHc

6 | Introduction to SQL Server on Azure Virtual Machines

An SQL Server VM gives you a highly compatible method to lift and shift many workload
types to the cloud. This includes transactional workloads capturing customer orders
or business intelligence workloads using analytics features such as Machine Learning
Services, Reporting Services, Analysis Services, and so on. This is because the Azure
VM presents itself as very much the same as your on-premises hardware, the only real
difference being how you configure networking and security over the internet to work
with your local security infrastructure. For SQL servers that use SQL authentication,
the application will require little, if any, change, but using Active Directory will require
some configuration. (Using SQL-based authentication is not considered as good as
using Active Directory integration for many reasons. Chapter 3 will cover security,
including integrating with your existing Active Directory.)

One major choice you have, beginning with SQL Server 2017 and continuing into SQL
Server 2019, is which OS to choose. Beyond Windows Server, SQL Server will run on
Red Hat Enterprise Linux (RHEL), SUSE Linux Enterprise Server (SLES), and Ubuntu.
This allows SQL Server to be run on any OS used by an organization that's heavily
invested in open-source software (OSS), while still providing virtually all the database
features of the Windows version.

Before we dig deeper into the topic surrounding OS choice for virtual machines, there
are still two configurations of SQL in Azure that we want to cover, because they offer
specific benefits that the IaaS platform may not.

Azure SQL Managed Instance

The Azure SQL Managed Instance deployment option is a PaaS database offering that
sits right in the middle of the Azure SQL offerings in terms of management and is one
of two Azure SQL PaaS offerings. It targets scenarios where the customer needs much
of the rich functionality of the full SQL Server product but desires the value of the
platform-managed services model as well.

One of the biggest differences between the managed instance model and the Azure
SQL VM model is that a managed instance will always be on the most up-to-date
version of SQL Server (a database can be set to an earlier compatibility level if needed).
This means, at the time of this book's writing in early 2020, managed instance–hosted
databases provide the user with at least everything that SQL Server 2019 has to offer,
up to the latest public cumulative update (CU), including all the new and improved
features in SQL Server 2019 (we will provide an overview later in this chapter). Soon
after the next version of SQL Server is released, managed instances will be upgraded as
part of the offering.

The Azure SQL portfolio | 7

While it is extremely rare that Microsoft removes features from SQL Server (in fact,
backward compatibility is an important part of their story), there are frequent changes
in how the engine optimizes queries, so be sure to keep up with performance changes
in your application. This process of determining and mitigating performance issues
after releases is made all the easier by the Query Store feature10.

The managed instance model will automatically maintain backups11 of your data,
restorable to a point in time, based on the level of retention you configure. It safeguards
your backups from disaster by using read-access geo-redundant storage (RA-GRS).

While backups are part of the managed instance package, geo-replication (that is,
maintaining active copies of your data in multiple regions in case of catastrophic failure)
is not. The managed instance option provides you with Auto-Failover Groups12 you can
configure like in SQL Server 2019. This lets you configure your server to fail over to a
different Azure datacenter if desired.

In many ways, a managed instance looks and behaves just like a typical SQL Server,
particularly when dealing with DML code, instance security, and tools such as SQL
Agent. (SQL Agent is limited in the types of jobs it can schedule, due to a lack of OS and
file system access.) There are important considerations, such as the inability to restore
a database from a managed instance to a local or VM SQL Server instance or to use SQL
Server Integration Services (SSIS) in the same way as you do with a typical instance.
(SSIS projects will work using Azure Data Factory13, but the infrastructure of the SSIS
DB does not exist natively in the managed instance itself. For more details, you should
refer to Microsoft's guide to migrating SSIS packages to Azure SQL Managed Instance14.
Any code that needs access to the file system, such as for processing files for import or
export, will need to be modified to work with Azure Blob storage15 instead.

Managed instances provide a lot of parity with an up-to-date version of SQL Server,
providing a way to lift and shift many workloads to the cloud with a reasonable amount
of work. However, there are limitations, such as always being on the most recent
version of SQL Server, a lack of access to the file system, and not being able to restore
to a local SQL Server instance that may make this untenable for many scenarios, leading
to using the IaaS VM offering.

In the next section, we will look at one more Azure SQL offering that goes deeper
into the managed aspect of PaaS offerings, even beyond what you have in a managed
instance. It may require more adjustment from an existing on-premises environment
but offers conveniences in management that leave you to mostly design and develop
tables and code.

https://bit.ly/3ga5Yuw
https://bit.ly/3cQoHsN
https://bit.ly/3cOeUUo
https://bit.ly/3e6t7wc
https://bit.ly/2ZnmEIZ
https://bit.ly/2LIiBPz

8 | Introduction to SQL Server on Azure Virtual Machines

Azure SQL Database

Azure SQL Database16 (or SQL Database for short) is the fully managed version of SQL
Server, falling deeper into the category of PaaS than the managed instance model.
Using SQL Database, you are provided with a database container (or containers, in
more complex configurations) in which to create tables and coded objects. The T-SQL
features of SQL Database may actually be more advanced than what you get with the
other offerings, as they often release features to SQL Database first.

There are many configurations to choose from in terms of performance and size,
starting small and scaling up to very large database sizes. In fact, using Hyperscale17 for
SQL Database, this platform's offerings can currently support up to 100 TB of data, so
the amount of space and computing power is not generally a limiting factor.

The SQL Database offering is tailored to cloud applications with the least amount of
legacy management dependencies. This does not mean that your configuration must
be one simple database, however, and at the time of writing this book, there are three
options for how you can set up your SQL Database environment:

• Single database: A single database that can be used to store data. This will feel like
an SQL Server instance to the user/administrator, with access to a TempDB and
master database. If you have connected to a contained database in SQL Server, it is
conceptually similar except the boundaries are far more firm. Compute resources
are available via pre-provisioned or serverless options18, ensuring sufficient
resources for both consistent and highly unpredictable workloads.

• Elastic Pool: Multiple independent single-database configurations that share
the same set of computing resources. This allows you to have low-use and high-
use pattern databases in the same pool, where both databases can use up to the
maximum resources when needed, but not pay for large amounts of resources
dedicated to one database when it is only rarely needed. This is particularly
effective when the databases see heavy utilization at different times of the day.

• Database server: A group of single databases and elastic pools, banded together
for administrative purposes, for things such as networking, security principals
(logins), policies, and so on.

https://bit.ly/2XeRzVk
https://bit.ly/2yjMHWk
https://bit.ly/2LMUU8A

The Azure SQL portfolio | 9

As the consumer, you are getting the SQL Server database as a platform to store data.

Some aspects of the table structures you create on Azure SQL Database may need to
be different from the other offerings. One key difference is that every table will require
a clustered index to enable the use of replication of your data to redundant storage.
(Using clustered indexes on all tables is considered a best practice in most cases
anyhow.) You have no control over where your data is located (outside of the region of
the world), or the computer the data is located on. This is all done for you.

Just like managed instances, backups are part of the managed package, but additionally,
high availability via geo-replication is also supported as part of the management of your
database, with very little configuration. Microsoft's guide offers more insights on active
geo-replication19.

A feature that is specific to SQL Database that is particularly useful is automated
indexing20. Using the automatic index management feature, SQL Database can apply
a CREATE or DROP INDEX automatically based on what the optimizer has recognized
as a given need, then monitor that change to see whether it has helped or harmed
performance and adjust accordingly.

The SQL Database offering provides the most management for you but may not exactly
match the needs of an organization with a well-established working system in an SQL
Server instance.

Now that we have covered these three offerings, in the next section, we will outline
some of the important differences between them.

https://bit.ly/2LM0zMe
https://bit.ly/2LM0zMe
https://bit.ly/2Zpej7M

10 | Introduction to SQL Server on Azure Virtual Machines

SQL Server in Azure comparisons

All three of the Azure SQL offerings that we have introduced in this section are based
on the same SQL Server 2019 database engine, but there are key differences between
them. In the following table, we list some of the key differences to remember when
considering which option to choose:

Figure 1.1: Azure SQL offerings

SQL Server on
Azure VMs

Azure SQL Managed
Instance Azure SQL Database

Model IaaS PaaS PaaS

Core
Usage

Moving workloads to
Azure with the least
amount of change

Migrating to an environment
that needs far less
management than IaaS (but
still retains the general SQL

New applications, often
cloud-based, that have
no legacy dependencies
on SQL Server instance
constructs

Backups Managed by DBA
Automatic (can make
manual copy-only backups
to Azure Blob storage)

Automatic

File-Level
Access Full Limited to accessing Azure

Blob storage N/A

OS
Microsoft Windows,
Linux (RHEL Server,
SLES, and Ubuntu)

N/A N/A

Task
Scheduling SQL Agent SQL Agent (Limited types of

jobs supported) Azure Automation

SQL
Server
Engine
Version

Supported release
(or bring your own
media to install any
version)

on the latest CU, databases
can be used past
compatibility level

release, latest CU,
compatibility with
current release only

High
Availability

Built-in (Disaster recovery
by using Always On
Availability Groups)

Built-in

SQL Server 2019 highlights | 11

In the next section, we will highlight the key new features that were included in SQL
Server 2019 that make it a worthwhile upgrade from earlier versions (including from the
most recent version before 2019: SQL Server 2017).

SQL Server 2019 highlights
SQL Server 2019 has a lot of new and enhanced features that make it not only a world-
class relational database engine, but a world-class data platform. In this section, we will
be taking a brief look at what SQL Server 2019 adds on from previous versions, as well
as the features that have been added to running SQL Server on a Linux-based platform
in SQL Server 2019.

You can read more about the new features available in SQL Server 2019 on Microsoft
documentation21 or the Microsoft SQL Server 2019 Technical white paper22.

Intelligence over all of your data

Intelligence over all of your data is a phrase that you can find on multiple Microsoft
websites describing an important SQL Server feature for integrating your disparate
data sources: PolyBase. PolyBase23 is a feature that can be used to virtualize data from
external sources including Azure Cosmos DB, Azure Blob Storage, and starting in SQL
Server 2019, data in SQL Server, Oracle, Teradata, and MongoDB. Once connected
and configured, you can query this data just like any normal relational table (as well as
joined with your local relational data).

Additionally, SQL Server 2019 introduces Big Data Clusters24, providing scale-out
capabilities with clusters of SQL Server, Apache Spark, and Hadoop Distributed File
System (HDFS) data, allowing reading and writing of large quantities of data stored in
SQL Server or big data sources.

Both features allow you to bring relational data and big data together to provide a
uniform platform for data processing. This allows you to use tools such as Machine
Learning Language Extensions, AI with Machine Learning Services, Reporting Services,
and even SQL Server's primary language T-SQL with data from very differently
formatted data structures, without doing any copying or transformation of data.

https://bit.ly/3ehBFjZ
https://bit.ly/2XcaHTM
https://bit.ly/36oCaFZ
https://bit.ly/2XcaHTM

12 | Introduction to SQL Server on Azure Virtual Machines

Enhancements in developer experience

SQL Server 2019 includes several important improvements to the developer experience
that help to make developing data-based solutions easier:

• UTF-8 support: Allows you to store Unicode data in the char and varchar data
types via new collation support. This allows you to store data in the very popular
Unicode encoding format natively, not requiring translation into the UTF-16
standard that is used in nchar and nvarchar columns. For more information, refer
to the Microsoft documentation25 that covers collation and Unicode support in
SQL Server. For an in-depth commentary on UTF-8 in SQL Server, refer to the
enlightening blog26 by Pedro Lopez.

• Machine Learning Services: Machine Learning Services27 enables R and Python
support, allowing T-SQL to employ machine learning models where your data
lives. It allows processing data at the partition level, rather than only at the object
level, enabling parallel processing. Additionally, Machine Learning Services can
now be used with Failover Clusters.

• SQL Server Language Extensions and the Extensibility Framework:
Improvements made to allow additional languages to be run in a very similar
manner to R and Python, which are used by Machine Learning Services. This gives
developers more choices for running established code right in the SQL Server
engine. Currently, only Java is supported, but more languages will follow. For more
details, check out Microsoft's overview of language extensions28.

• Lightweight query profiling: Improvements to live query plan gathering29 to make
it cheaper to get statistics and progress on currently executing SQL statements.

• SQL Graph enhancements: SQL Server graph database capabilities30 allow for
the creation of nodes and edges (many-to-many relationships), which are often
needed for applications where a more traditional relational schema is too rigid
and complex to query. Improvements now allow edge constraints (foreign keys on
edges) and query improvements to query for nodes that are multiple edges away
from one another.

https://bit.ly/3d29K72
https://bit.ly/2ZoWC88
https://bit.ly/2TsFjzr
https://bit.ly/2XfwSbH
https://bit.ly/36mhq1M
https://bit.ly/3bMWWjD

SQL Server 2019 highlights | 13

Performance enhancements

SQL Server has been a leader in performance for years, with great backward
compatibility at the code level, and tremendous leaps in performance in every new
version. SQL Server 2019 brings with it even more improvements to performance, many
built on enhancements from recent releases. For example, memory-optimized tables
can bring tremendous performance improvements when storing data, and in SQL
Server 2019 that feature has been leveraged to enhance the metadata for TempDB.

In this section, we will briefly look at some of the performance enhancements in SQL
Server 2019:

• Enhancements to Intelligent Query Processing (IQP): IQP31 is a family of loosely
connected technologies designed to improve your SQL Server, many without
any changes to your code. Several new methods of improving performance, such
as expanding batch mode to include rowstore structures and inlining scalar
functions, have been added.

• Accelerated Database Recovery (ADR): ADR32 dramatically reduces the time
required to return control to the user in a rollback of a large data change/
recovery on restart, doing much of the work asynchronously.

• Hybrid Buffer Pool: Hybrid Buffer Pool33 provides support for persistent memory
modules (PMEMs), which allows the engine to use PMEMs in the classic roles
typically played by RAM and the data file, eliminating the need to checkpoint
data from memory, greatly enhancing performance for scenarios where very high
performance is required.

• Memory-Optimized TempDB Metadata: The metadata for the TempDB34 database
can be altered to use in-memory data structures, removing bottlenecks that occur
when rapidly and concurrently creating a large number of temporary tables.

https://bit.ly/2LI5UnI
https://bit.ly/2WPvu0D
https://bit.ly/2LNzFn2
https://bit.ly/3bJCiRy

14 | Introduction to SQL Server on Azure Virtual Machines

Security improvements

Security is (or at least should be) one of the most important concerns for any data
engineer/administrator. SQL Server 2019 introduces several important security
improvements, building on improvements in recent versions of SQL Server, such as
Always Encrypted35, row-level security36, dynamic data masking37, transparent data
encryption38, and far more39 than we will cover in this book.

Changes in SQL Server 2019 to security include:

• Always Encrypted with secure enclaves: An enhanced form of Always Encrypted40
that allows computations/searches to occur on the server side on encrypted
string data, but still never shares the plaintext with the user or administrator
without the required key.

• Data classification and auditing: This starts with an SQL Server Management
Studio (SSMS) tool to help locate, classify, and tag sensitive data that may need
to be handled specially. Next, to know when sensitive data is being accessed, SQL
Server Audit41 includes a new field in its output that indicates the data sensitivity
of data that is included in the audit output. For more details, refer to this
Microsoft guide42 on data discovery and classification.

• Simplified certificate management: Certificate management43 is integrated with
SQL Server Configuration Manager.

High Availability/Disaster Recovery (HADR)

As your demand for around-the-clock access to data increases, the following features
are designed to make usage of SQL Server even more possible during maintenance and
during a failover to a different server:

• Index maintenance enhancements: SQL Server 2019 adds to the types of indexes
that can be rebuilt online to include clustered columnstore indexes, as well as
allowing you to pause and resume rowstore index rebuilds. For more details, check
the information44 provided by Microsoft.

• Availability group enhancements: Availability groups45 are an HADR feature
that was first introduced in SQL Server 2012. They allow you to maintain copies
of your database in a different location to fail over to when there is a failure in
your primary database/server (as well as other uses). SQL Server 2019 increases
the number of synchronous secondary replicas from three to five. Automatic
client redirection46 has been added, so clients can fail over without changing the
connection string. Additionally, there have been licensing improvements47 for
Software Assurance customers pertaining to HADR scenarios.

https://bit.ly/2zicH4P
https://bit.ly/36gHmvw
https://bit.ly/2z7DNMf
https://bit.ly/2AFx6kH
https://bit.ly/2AFx6kH
https://bit.ly/3e9YIgt
https://bit.ly/36mikLI
https://bit.ly/2Zoid0H
https://bit.ly/2Zoid0H
https://bit.ly/3gcfwVJ
https://bit.ly/2AO4QfW
https://bit.ly/2ZrNIqv
https://bit.ly/2LLyTHl
https://bit.ly/2LNBala
https://bit.ly/2LNBala
https://bit.ly/2XgnoNp

SQL Server 2019 highlights | 15

Platform of choice

SQL Server has been around for over 20 years on Windows, but in SQL Server 2017, the
platform choices grew to include Linux. SQL Server 2017 on Linux included most of the
primary features of a relational engine that customers needed, but not all of them. SQL
Server 2019 adds most of the features that were missing in SQL Server 2017.

Features added for SQL Server 2019 on Linux include:

• Replication: Data is allowed to be copied automatically between databases on
the same or different instance (including Windows instances). Transaction and
snapshot replication is now in Linux.

• Distributed Transactions: Enables transactions that extend beyond the confines
of the instance.

• Change Data Capture: Maintains a history of changes to data in a database,
commonly for processes duplicating data where replication doesn't make sense.

• Extended Active Directory Support: Adds support for third-party Active Directory
integrations.

• Machine Learning/Language Extensions: Adds the ability to run R, Python, and
Java inside the SQL Server engine.

• PolyBase: Ability to query external data and leverage data virtualization using
T-SQL, as described earlier.

For a complete list of improvements to the Linux version of SQL Server with links to
more details, check out the information at the Microsoft documentation48.

Beyond Linux on a VM or on-premises server, improvements have been made when
installing SQL Server on a container. Azure Container Registry49 provides a location to
manage containers for Docker and Open Container Initiative images.

SQL Server is also now available50 on Red Hat Enterprise Linux 8, as well as using Red
Hat Universal Image Containers.

Finally, when using containers, SQL Server 2019 does not need to be started as a root
container51 in Linux, providing a more secure experience.

https://bit.ly/2AOPp7d
https://bit.ly/2XdyvXm
https://bit.ly/2TqTwwK
https://bit.ly/3bQMozS
https://bit.ly/3bQMozS

16 | Introduction to SQL Server on Azure Virtual Machines

SQL Server IaaS scenarios and use cases
With all the choices for how to deploy and implement SQL Server for your organization,
both on-premises as well as through the Azure SQL offerings, why choose SQL Server
on an Azure VM? While the more managed versions of SQL Server provide a lot of
benefits, they have downsides if you are heavily invested in SQL Server on-premises
because they can require you to change your infrastructure considerably. (Even the
managed instance offering may be too restrictive for many organization's needs.) The
IaaS model allows you to use the entire SQL Server 2019 feature set in a way that will
work mostly as your on-premises model has for years.

The IaaS model is natural to existing DBAs while reducing (or even eliminating) the need
to house and manage server hardware in your organization's premises. There is also
licensing value as well, because SQL Server VMs can be adjusted in power and storage
relatively easily, as well as licensed to pay as you go, allowing you to start and stop as
you desire and incurring far smaller costs when VMs are not running.

In this section, we will look at three use cases for SQL Server 2019 in an Azure VM that
will immediately benefit your organization, with the least friction with what your staff
already know:

• Lift and Shift: Keeping your applications pretty much as is, moving to Azure.

• Extending On-premises Environment to the Cloud: When you need to add a
server to your environment and do not wish to add more hardware to your estate.

• Development and Test Environments: Developing new code and testing it,
perhaps in the latest SQL Server version or a different edition (for example, if you
are on standard edition and want to see what the effect of using Enterprise Edition
would be).

These scenarios are ones that you are likely to use IaaS for. Not for radical change
to what you currently do, but rather to make use of the knowledge and skill set of
existing database human resources, all while reducing the need to manage and maintain
hardware on your premises, either for long-term or short-term utilization.

SQL Server IaaS scenarios and use cases | 17

Lift and Shift

For many organizations, keeping hardware up to date is a daunting task. You purchase
a server one year, and it becomes outdated very quickly. Three or four years later,
when the hardware is very outdated, you finally have the budget to upgrade the
hardware. Then, you can perform the upgrade, including creating servers, moving
data around, and so on. All of this is a time-consuming, costly process, even if you are
already virtualizing your server resources on-premises. At the same time, moving your
environment to a fully managed service, even a managed server, can be complex or even
not possible, depending on your requirements. (For example, if you need to use the file
system or other executables on the same server, it is not possible in a managed server
or SQL Database.)

In a lift-and-shift operation, you get one or more servers that you can configure exactly
as your on-premises server were configured. The same drives, directories, services, and
so on, even including third-party executables.

What you don't have to worry about is the scalability of your server or how to keep
up with the latest hardware. An Azure SQL VM can be sized as needed, to any level of
hardware you need, and resized52 if needs change.

Now the burden of managing the hardware lies with the Microsoft Azure management
team, leaving your organization with more time to build and test quality software.

Extending your on-premises environment to the cloud

If moving your entire datacenter to Azure is not something your organization is ready
for, that doesn't mean that SQL Server on an Azure VM is not useful. There are a few
ways you might extend your environment using Azure VMs.

A primary way would be as a disaster recovery site. You can have a reasonably low
power server that you copy your data to, perhaps utilizing Always On availability
groups53 using a hybrid on-premises and cloud configuration. If the server needs to
recover from a disaster, you ramp up the resources, point clients to the Azure VM
instead of the local server, and you are ready to go.

https://bit.ly/2XdyOBu
https://bit.ly/3cR75NG
https://bit.ly/3cR75NG

18 | Introduction to SQL Server on Azure Virtual Machines

Another common use is when you need an extra server to meet a need (possibly even a
short-term need), but do not have the inclination to procure and configure a server and
permanent SQL Server licenses. Once you have the VPN gateway54 configured, adding
a VM-based server in Azure is very much like adding one locally. The main difference
is that Microsoft does the heavy lifting of setup for you; you just determine how much
power you need (and adjust as necessary). And since SQL Server licensing can be built
into charges, if the need is temporary, you do not need to buy a full-price license for
SQL Server. Getting rid of a server you no longer need is now simply a matter of clicking
delete on the portal (and verifying that you do actually want to delete the server,
naturally).

Development and test environments

The last use case we will present is about using Azure SQL VMs for developing and
testing new software. Creating a new SQL Server VM can be done in a very short
amount of time, and subsequent spin-up time can be further shortened by using
templates to configure everything as you need it.

Developers can get a new VM with an SQL Server Developer Edition license, then
quickly load executables and test data on it. Once done with testing, they can shut
down the server and only pay for storage costs. If you need to start over from scratch, it
is easy to delete the server and start the process over with a fresh install.

In the next section, we will look at how we can choose the best OS for your SQL
Server VM.

Choosing an OS for SQL Server in Azure VMs
When you create a new SQL Server on an Azure VM, among the first choices you have
is which OS to choose. In this section, we will look at some of the thought processes
to go through when deciding whether to choose Windows Server or one of the Linux
distributions (also referred to as distros) for your SQL Server instance.

SQL Server can run on Windows or Linux, and what might be surprising is that it is
the exact same SQL Server engine code base. Of course, Windows and Linux cannot
run the same binaries natively, so Microsoft built the SQL Platform Abstraction Layer
(SQLPAL), which makes this a reality. For more details on SQLPAL and how it is used,
the blog55 by the SQL Team offers interesting insights.

While SQL Server on Windows and Linux have the same code base, there are
differences to be understood. In this section, we will look at the reasons for choosing
either Windows or Linux, and then discuss the differences between the two
implementations.

https://bit.ly/36iLjQk
https://bit.ly/2Tkvdk3

Choosing an OS for SQL Server in Azure VMs | 19

Reasons to choose either Windows or Linux for SQL Server

This book's focus is on using Microsoft SQL Server on an IaaS platform, and the fact
that SQL Server runs on either OS may sound fishy to you. You may be suspicious that
they want to get you on Linux and then lure you to Windows over time. It is important
to realize that this is not the case: they are both the same SQL Server product and are
equally supported.

The primary deciding factor on which OS to use is actually based on the comfort level
of the company that will be using it. While there are a few differences in feature sets,
there is no compromise in quality or performance with either choice. Much like the
decision process in choosing between the IaaS model or the PaaS model, the choice to
use Linux for the server OS is more a matter of your organization's needs, rather than
being based upon any objective benefit.

If an organization is not comfortable with Windows, it is going to be harder to
implement SQL Server on Windows, even using a pre-built image. If you are
comfortable with Linux, the process to install and configure SQL Server is more like
what you are used to when installing Linux software. As we will see in the following
section, while the functionality to the user is going to be almost exactly the same on
either OS, the differences in how you configure SQL Server are significant.

One thing to note is that Open-source Software (OSS) developers often prefer Linux
because they can install and run additional OSS packages in the same environment with
their database server as part of a solution. These packages may or may not run on the
Windows platform. SQL Server on Linux lets them reap the benefits of SQL Server's
mature data storage engine to build applications that run faster, are more secure, have
tight integration with machine learning, and so on.

Note

The goal of SQL Server on Linux is not to kill the Windows version, but to broaden
the audience, making the product speak the implementation language of a new
audience while providing the same SQL Server T-SQL language to all.

20 | Introduction to SQL Server on Azure Virtual Machines

The only reason that you may not be able to feasibly choose Linux for your OS is that
some features are not yet supported (for example, Merge Replication, or having multiple
instances on a single server), some that will likely never be (such as FILESTREAM and
FileTable, both of which interface tightly with the Windows OS), and others that will
require new binaries to be created (or another abstraction layer), such as Analysis
Services. Any need for these features, even something like Reporting Services, which
runs as a separate executable, would currently require an entire extra license for SQL
Server to run on a separate Windows Server, which could be cost-prohibitive.

The final issue to bear in mind when choosing an OS for SQL Server is cost. Cost
is a very complicated discussion because costs come from many different places,
some more obvious than others. There are obvious cost differences you can compare
empirically, such as the hourly rate of running a VM on Windows versus one with Linux.
However, if you must hire new staff and train them on how Windows works, or pay
consultants every time something isn't working, the costs may be prohibitive. The same
can be said about Linux.

In the end, the most compelling reasons to choose between Linux and Windows are to
do with your comfort level with each OS and whether you need specific features that
may not be available on Linux (a list that we noted earlier shrank considerably with SQL
Server 2019.)

Differences between SQL Server on Linux and Windows

Beyond the obvious deep differences in how the different OSes behave (even the
different versions of Linux have their own ways of doing things), there are some
differences between the Windows and Linux versions of the product.

In this section, we are going to highlight some of the differences between SQL Server
on Linux and Windows, whether you use a pre-built SQL Server VM image from Azure
or install SQL Server on your own on-premises computers. The following table contains
a list of key differences between SQL Server on Windows and Linux:

Choosing an OS for SQL Server in Azure VMs | 21

Figure 1.2: Differences between SQL Server on Linux and Windows

A few of these differences warrant a little bit of discussion; most importantly, we'll
consider the way you install and configure SQL Server and some feature-set limitations
of SQL Server on Linux.

Windows Linux

the graphical user interface (GUI) by most
DBAs. the command-line interface (CLI).

Installation is done using one executable.

Features are installed using multiple package
managers. For example, the database
engine, full text search, Integration Services,
SQL Server Agent, PolyBase, and so on are
all in individual packages.

Can run all SQL Server services natively.
Several external SQL Server services are
not currently supported (Analysis Services,
Reporting Services, and so on).

Multiple instances of SQL Server on one
Windows server. A single instance per Linux server.

Code executed in the engine can access
the OS (XP_CMDSHELL, CLR assemblies,
FILESTREAM/Filetable). than backup/restore) are not enabled.

SQL Server Agent can send alerts when
issues occur or certain errors are raised. SQL Server Agent cannot send alerts.

SQL Server Agent can execute command

SQL Server Analysis service (SSAS), or SQL
Server Reporting service (SSRS) actions
natively.

SQL Server Agent cannot execute command

packages, or perform SSAS or SSRS
actions.

Databases can use Stretch DB to store
infrequently used data in Azure Storage,
instead of using local storage.

Stretch Database is not supported.

22 | Introduction to SQL Server on Azure Virtual Machines

Installation/configuration

While the experience of the typical user employing T-SQL or using an application will
be very nearly 100% the same, there are some major differences between SQL Server
2019 on Linux compared to running it on Windows. Obviously, the biggest difference is
that in Windows, most SQL Server DBAs will be used to working with a GUI rather than
the CLI. Hence, changing from Windows to Linux can be very a large paradigm shift,
particularly during installation but also even when choosing where to locate database
files. However, if you are used to Linux, the method of server and instance installation/
configuration should generally be obvious to you; the same goes for how the file
system works.

While it is true that there is a version of Windows that you manage mainly from the
command line (Windows Core) that SQL Server can execute on, it is not typically used
because Windows administrators are generally used to managing the server via the
GUI (in the same manner as their Windows and even Macintosh computers that they
regularly use). Even then, however, the commands to install on either platform differ in
that the Core SQL Server installation is one executable with many parameters, rather
than requiring multiple commands to install different features.

When you install the Linux image with SQL Server the first time, it will be necessary
to access the server via what is basically a command terminal. Features are added and
configured individually using command-line tools instead of setup.exe. Once you have
the server installed, you can access the SQL Server instance on the Linux computer
using SSMS, Azure Data Studio, SQL Server Configuration Manager, and the other GUI
tools on your Windows computer. If you do wish to run tools on a Linux GUI, SSMS will
not work, but Azure Data Studio56 will.

Feature set

Probably the most compelling reason for choosing Windows over Linux is if you need
some of the external services that are not on Linux. While the engine is the same, there
are several services that have their own binaries and are not a part of the core SQL
Server engine. For SQL Server 2019, this list includes:

• Reporting Services

• Analysis Services

• Data Quality Services

• Master Data Services

https://bit.ly/2LLhGh5

Summary | 23

You would need another SQL Server license to run these services on a different
computer, which might increase your costs greatly. None of these services are needed
for a typical OLTP database, but if you are looking to implement a business intelligence
(BI) solution together with SQL Server on Linux in Azure VMs, cloud-based options to
augment your VM include Power BI and Azure Analysis Services.

Summary
In this chapter, we looked at SQL Server 2019 and the various Azure SQL offerings
that are available to deploy your data. There are multiple models available, from a
very managed PaaS service such as Azure SQL Database, to the manual-lite managed
instance, to the manual and customizable IaaS-based Azure SQL VM. The rest of this
book will focus on SQL Server on an Azure VM, whether on Windows or Linux.

SQL Server 2019 on Linux provides customers with a choice of platform, allowing them
to tailor SQL Server to the needs of their personnel where much of their software is
run on the Linux open-source OS. SQL Server is not itself open source, but Microsoft is
embracing the OSS community like never before.

In the next chapter, we will look at the different options for deploying a VM on
Azure for SQL Server. Choices such as series of VM, storage types, and installation
will be covered, taking into consideration the different workload types that may need
to be supported.

24 | Introduction to SQL Server on Azure Virtual Machines

Chapter links
1. https://bit.ly/2XiCe5Y

2. https://bit.ly/3g8G8Hh

3. https://bit.ly/2TqJ4Fl

4. https://bit.ly/2ZmMaOw

5. https://bit.ly/36gBLFq

6. https://bit.ly/36ifoiT

7. https://bit.ly/36pvzLC

8. https://bit.ly/3e4YxTp

9. https://bit.ly/2Xc8GHc

10. https://bit.ly/3ga5Yuw

11. https://bit.ly/3cQoHsN

12. https://bit.ly/3cOeUUo

13. https://bit.ly/3e6t7wc

14. https://bit.ly/2ZnmEIZ

15. https://bit.ly/2LIiBPz

16. https://bit.ly/2XeRzVk

17. https://bit.ly/2yjMHWk

18. https://bit.ly/2LMUU8A

19. https://bit.ly/2LM0zMe

20. https://bit.ly/2Zpej7M

21. https://bit.ly/3ehBFjZ

22. https://bit.ly/2WRIjaK

23. https://bit.ly/36oCaFZ

24. https://bit.ly/2XcaHTM

25. https://bit.ly/3d29K72

https://bit.ly/2XiCe5Y
https://bit.ly/3g8G8Hh
https://bit.ly/2TqJ4Fl
https://bit.ly/2ZmMaOw
https://bit.ly/36gBLFq
https://bit.ly/36ifoiT
https://bit.ly/36pvzLC
https://bit.ly/3e4YxTp
https://bit.ly/2Xc8GHc
https://bit.ly/3ga5Yuw
https://bit.ly/3cQoHsN
https://bit.ly/3cOeUUo
https://bit.ly/3e6t7wc
https://bit.ly/2ZnmEIZ
https://bit.ly/2LIiBPz
https://bit.ly/2XeRzVk
https://bit.ly/2yjMHWk
https://bit.ly/2LMUU8A
https://bit.ly/2LM0zMe
https://bit.ly/2Zpej7M
https://bit.ly/3ehBFjZ
https://bit.ly/2WRIjaK
https://bit.ly/36oCaFZ
https://bit.ly/2XcaHTM
https://bit.ly/3d29K72

Chapter links | 25

26. https://bit.ly/2ZoWC88

27. https://bit.ly/2TsFjzr

28. https://bit.ly/2XfwSbH

29. https://bit.ly/36mhq1M

30. https://bit.ly/3bMWWjD

31. https://bit.ly/2LI5UnI

32. https://bit.ly/2WPvu0D

33. https://bit.ly/2LNzFn2

34. https://bit.ly/3bJCiRy

35. https://bit.ly/2zicH4P

36. https://bit.ly/36gHmvw

37. https://bit.ly/2z7DNMf

38. https://bit.ly/2AFx6kH

39. https://bit.ly/3e9YIgt

40. https://bit.ly/36mikLI

41. https://bit.ly/2Zoid0H

42. https://bit.ly/3gcfwVJ

43. https://bit.ly/2AO4QfW

44. https://bit.ly/2ZrNIqv

45. https://bit.ly/2LLyTHl

46. https://bit.ly/2LNBala

47. https://bit.ly/2XgnoNp

48. https://bit.ly/2AOPp7d

49. https://bit.ly/2XdyvXm

50. https://bit.ly/2TqTwwK

https://bit.ly/2ZoWC88
https://bit.ly/2TsFjzr
https://bit.ly/2XfwSbH
https://bit.ly/36mhq1M
https://bit.ly/3bMWWjD
https://bit.ly/2LI5UnI
https://bit.ly/2WPvu0D
https://bit.ly/2LNzFn2
https://bit.ly/3bJCiRy
https://bit.ly/2zicH4P
https://bit.ly/36gHmvw
https://bit.ly/2z7DNMf
https://bit.ly/2AFx6kH
https://bit.ly/3e9YIgt
https://bit.ly/36mikLI
https://bit.ly/2Zoid0H
https://bit.ly/3gcfwVJ
https://bit.ly/2AO4QfW
https://bit.ly/2ZrNIqv
https://bit.ly/2LLyTHl
https://bit.ly/2LNBala
https://bit.ly/2XgnoNp
https://bit.ly/2AOPp7d
https://bit.ly/2XdyvXm
https://bit.ly/2TqTwwK

26 | Introduction to SQL Server on Azure Virtual Machines

51. https://bit.ly/3bQMozS

52. https://bit.ly/2XdyOBu

53. https://bit.ly/3cR75NG

54. https://bit.ly/36iLjQk

55. https://bit.ly/2Tkvdk3

56. https://bit.ly/2LLhGh5

https://bit.ly/3bQMozS
https://bit.ly/2XdyOBu
https://bit.ly/3cR75NG
https://bit.ly/36iLjQk
https://bit.ly/2Tkvdk3
https://bit.ly/2LLhGh5

Virtual machines (VMs) are the core of all infrastructure-as-a-service (IaaS)
deployments. A VM in Azure is similar to a VM premises using a hypervisor. The main
difference is that Microsoft maintains the hypervisor and its related infrastructure in
Azure. A VM also means that whether you choose to have Microsoft manage selected
administration tasks, such as backups, or you perform those tasks yourself, it is still an
operating system (Windows Server or a distribution of Linux) and installation of SQL
Server that needs to be administered, maintained, patched, made available, and so on.

This chapter will help you understand why you should consider IaaS and covers how to
approach choosing the right virtual hardware for a VM with SQL Server in Azure.

Getting started with
SQL Server on Azure

Virtual Machines

2
By Allan Hirt

30 | Getting started with SQL Server on Azure Virtual Machines

The benefits of deploying SQL Server using IaaS
Besides IaaS, there is another deployment method for SQL Server: platform-as-a-
service (PaaS). Azure SQL Database, or Azure SQL Managed Instance, is PaaS. With
PaaS, there is no operating system (OS) or SQL Server instance you need to manage,
which includes things such as patching. All of that is done for you. Where that does not
work for some is that you may need control over the OS and/or SQL Server choices
(version or edition) due to standards, licensing, or other requirements. PaaS provides a
more packaged solution that fits the needs of many without needing a dedicated OS and
SQL Server instance.

Since IaaS is just a VM with an OS, you can deploy whatever supported combination of
OS and SQL Server you desire. One principal difference between IaaS and PaaS is that
any automatic administration you would want done by Microsoft is opt-in, whereas
PaaS is done for you and you have limited configuration choices. One important reason
why many choose IaaS is the ability to make choices you could not otherwise make with
something like Azure SQL Database.

That choice extends to being able to use other Azure services, such as Azure Backup1,
Azure Security Center2, Advanced Data Security for SQL on Azure VM3, including
vulnerability assessment and Advanced Threat Protection, Azure Site Recovery4, and the
SQL Server on Azure Virtual Machines resource provider (covered in a later section).
This means that you can take advantage of the best of what Azure has to offer for IaaS-
based SQL Server deployments.

IaaS facilitates installations of SQL Server in cloud-first environments, "lift and shift"
scenarios where you have a requirement to deploy the same version/architecture as
on-premises but are migrating to Azure, and, more importantly, hybrid scenarios where
IaaS VMs become an extension of on-premises.

For example, you may still be primarily on-premises for most SQL Server installations
right now. However, you want to start moving toward using Azure and also have a need
for more robust disaster recovery. If you currently use Always On availability groups,
one or more IaaS-based replicas could be added to Azure (along with any other required
infrastructure, such as Active Directory Domain Services) to extend the existing
architecture up to the cloud. Refer to this Microsoft documentation5 to read more
about the new high availability and disaster recovery benefits for SQL Server.

https://bit.ly/2ZFMfx7
https://bit.ly/3d4oiDw
https://bit.ly/3gkCUkc
https://bit.ly/2X1burV
https://bit.ly/2LXSYdK

Deployment choices for IaaS | 31

All standard SQL Server deployment scenarios apply in IaaS as they do on-premises if
you are implementing physical servers or VMs. Most considerations for deploying SQL
Server properly on-premises are the same, with slight variations due to Azure, some of
which are documented in this chapter and others throughout this book. The rest of this
chapter will focus on how to choose a VM and approach things such as sizing.

There is one other benefit associated with choosing Azure for your IaaS SQL Server
platform: Microsoft will continue to provide Windows Server 2008 and 2008 R2 as well
as SQL Server 2008 and 2008 R2 extended security updates if you still require those
versions and need to migrate those workloads to VMs in Azure.

Deployment choices for IaaS
This section will cover the different ways in which you can deploy a VM in Azure, along
with considerations and best practices that are applicable no matter which method is
used, as well as briefly talk about licensing SQL Server in Azure.

Deployment methods

There are three options for deploying a VM in Azure for use with SQL Server:

• Choose a pre-built template, also known as an image, with SQL Server already
installed.

• Choose a template with the OS but without SQL Server installed, which will be
done after the VM is built.

• Build a custom image using a virtual hard drive and upload it to Azure.

No matter which of the three deployment methods you choose, you can deploy using
Cloud Shell (Bash or PowerShell)6, also known as the Azure command-line interface
(CLI), Azure portal7, Azure Resource Manager templates8 that are written in JSON, and
the Azure PowerShell module9. Builds can be automated and incorporated into DevOps
processes, which is often a best practice in many environments.

The remainder of this section will describe each of these methods in further detail.

https://bit.ly/2TB4sHY
https://bit.ly/2A4dsP6
https://bit.ly/2zi0ai5
https://bit.ly/2zi0hdv

32 | Getting started with SQL Server on Azure Virtual Machines

Using an image with SQL Server installed

Microsoft provides images in Azure that have SQL Server already installed. Using one
may save time and effort and provide a level of confidence in the overall configuration.
The OS, versions, and editions of SQL Server available can be seen by querying Azure
or looking in Azure Marketplace using the Azure portal. One example query using
the Azure CLI that shows all Ubuntu images in the East US 2 region with SQL Server
Enterprise Edition, as of the time of writing of this chapter, is as follows:

az vm image list --location eastus2 --offer Ubuntu --publisher SQLServer
--sku enterprise --all --output table

The results are shown in Figure 2.1. A similar query could be executed for Windows
Server or any other distribution of Linux or edition of SQL Server:

Figure 2.1: Ubuntu 16.04 images preconfigured with SQL Server

Note

There are multiple versions of SQL Server for a given major release such as SQL
Server 2019 (15.0.x). Each corresponds to the build number of SQL Server. If your
company has a requirement for a specific build of SQL Server and it matches one
of these images, you can use it. If not, then you will need to utilize the second or
the third method mentioned previously, either by deploying a VM without SQL
Server pre-installed or by creating an image from scratch.

Deployment choices for IaaS | 33

When using the Azure portal, the Azure Marketplace defaults to using the latest image
version. This means that for older versions, such as the ones shown in Figure 2.1, you
would need to use another method, such as PowerShell or CLI, to deploy that image.

The easiest way to find an image is to search for it in the Azure Marketplace in the
Azure portal. For example, you can search for SQL Windows 2019 and filter further as
desired, as shown in Figure 2.2. Note the limited choices as compared to Figure 2.1. In
some cases, the image available will be a specific version and/or edition of SQL Server
with an OS, while on other occasions, it will be a major version of SQL Server with
an OS:

Figure 2.2: Windows Server 2019-based SQL Server images in the Azure Marketplace

34 | Getting started with SQL Server on Azure Virtual Machines

Depending on the image selected, you may also have to specify the edition of SQL
Server as shown in Figure 2.3:

Figure 2.3: Choosing an edition of SQL Server

The Azure portal allows you to configure a VM's settings manually when you click
Create. You will be walked through a wizard via a series of panes where you configure
storage, networking, and, for Windows Server-based configurations, aspects of
SQL Server itself. Most IT organizations will choose this if using the Azure portal or
automate.

Deployment choices for IaaS | 35

You also have the option to Start with a pre-set configuration, as shown in Figure 2.3.
An example of what that would look like can be seen in Figure 2.4. You still need to go
through the rest of the configuration process, but what you would need to alter is much
less. Full documentation can be found in the topics Provision a Linux SQL Server virtual
machine in the Azure Portal10 and How to provision a Windows SQL Server virtual
machine in the Azure portal11.

Figure 2.4: Choosing defaults

https://bit.ly/36rGrIE
https://bit.ly/36rGrIE
https://bit.ly/3d1Xyn4
https://bit.ly/3d1Xyn4

36 | Getting started with SQL Server on Azure Virtual Machines

One difference to note is that, unlike a Windows Server-based SQL Server Azure VM
image, there are fewer SQL Server options available during configuration. With Linux,
you can only choose the core aspects of the VM. Anything related to SQL Server, such
as changing default data paths, is configured inside the VM once deployed. More
information on the differences compared with Windows Server can be seen in the
upcoming section, SQL Server on Azure Virtual Machines resource provider.

For Linux, the image with SQL Server pre-installed contains the Database Engine, SSIS,
and the command-line tools (sqlcmd and bcp). The end user license agreement (EULA)
is already accepted. SQL Server Agent is not enabled. SQL Server Agent along with
any other SQL Server features must be configured12. You will also need to reset the sa
password, which is set during configuration and not published, and, if desired, add the
tools to your default path.

This means, for Linux-based images, that you need to do some configuration after the
VM is built, but not as much as if you had to install SQL Server yourself using an image
with just the Linux distribution that is described in the next section.

Windows Server-based images with Developer, Enterprise, and Standard Editions come
with many SQL Server options pre-installed: The Database Engine (including replication
and R services, full-text search, and Data Quality Services), Analysis Services, and
Master Data Services. If you want to change the configuration, the full installation
media can be found on the local system drive. An example would be if you are not using
Analysis Services; you can simply uninstall it.

Even if you plan on uninstalling SQL Server for reasons such as needing to configure
an Always On Failover Cluster Instance (FCI), if you are using pay-as-you-go licensing
(refer to the upcoming section on licensing for more information), using an image with
SQL Server already installed gets you not only set up but also gets you the license(s)
required.

If the Marketplace images with SQL Server do not suit your needs, consider an image
with just an OS or build your own.

https://bit.ly/2ZBerkK
https://bit.ly/2ZBerkK

Deployment choices for IaaS | 37

Using an image without SQL Server installed

Instead of using a template with the OS and SQL Server already installed, you can
choose one that has the desired OS only. Choosing an image with just the distribution
of Linux is similar to what was described in the previous section.

There are a few reasons why you may choose to install SQL Server yourself. Three
example scenarios are listed here:

• An image has something desired, such as the high availability add-on in RHEL
needed for both FCIs and AGs already installed.

• A pre-built template with your desired version of SQL Server does not exist for the
target OS, which has an image. For example, as of the time of writing this chapter,
no RHEL 8 template is pre-built with SQL Server 2019. Another example would be
if your corporate standard was a specific version or a build of Linux such as RHEL
7.5, which is supported for SQL Server but there is no pre-built image.

• Your company has other specific requirements or challenges for a build that are
not met by any existing image, but a base OS provides a starting point. An example
would be SQL Server 2019 running on Windows Server 2016.

Figure 2.5 shows an example of selected RHEL images available in East US 2 that are
only an OS or a special variant:

Figure 2.5: Selected RHEL images

Once the VM with the chosen OS is built from the image, install SQL Server using the
instructions found in the topic Installation guidance for SQL Server on Linux13 or SQL
Server installation guide14 (for Windows Server-based VMs) and configure the instance
of SQL Server to how you need it.

If a base OS image will not work, you still have one choice: create your own.

https://bit.ly/2Xuj0dI
https://bit.ly/2TDBFTh
https://bit.ly/2TDBFTh

38 | Getting started with SQL Server on Azure Virtual Machines

Creating your own image

To configure a custom hard drive image for use in Azure, follow the documentation
linked below for each of the OSes supported by SQL Server:

• Red Hat Enterprise Linux (RHEL)15

• SUSE Linux Enterprise Server (SLES)16

• Ubuntu17

• Windows Server18

Generic information that applies to the three Linux distributions for creating a custom
hard drive can be found in the documentation topic, Information for Non-Endorsed
Distributions19.

Similar to the previous section, you must also install and configure SQL Server in
the OS.

SQL Server on Azure Virtual Machines resource provider

The SQL Server on Azure Virtual Machines resource provider is one way in which
Microsoft makes deploying in Azure easier for administrators. This feature is only
available for Windows Server-based VMs and can even be enabled if you deployed SQL
Server yourself and did not use a Marketplace image pre-installed with SQL Server.
To see how to perform this task, consult the following documentation: Register a SQL
Server VM in Azure with the SQL VM resource provider20.

https://bit.ly/2A4evyw
https://bit.ly/2XpdV6s
https://bit.ly/3ei9MZ2
https://bit.ly/2LXkA2p
https://bit.ly/2WXTFde
https://bit.ly/2WXTFde
https://bit.ly/3bXoIKx
https://bit.ly/3bXoIKx

Deployment choices for IaaS | 39

The resource provider allows you to configure certain aspects of SQL Server, but, more
importantly, also tasks such as backups that Microsoft can do for you instead of you
having to configure it all inside the VM. An example is shown in Figure 2.6:

Figure 2.6: Backups in the SQL Server resource provider

40 | Getting started with SQL Server on Azure Virtual Machines

Other things that you can configure include security and patching. For patching,
Microsoft will only apply updates marked as important, such as security updates.
You will still have to apply things such as SQL Server Cumulative Updates, but you
can specify the day, time, and maintenance window duration for applying important
updates.

Common Azure VM deployment considerations for SQL Server

Last, but not least, there are some common considerations and best practices when
deploying IaaS VMs in Azure for SQL Server, whether they are Linux- or Windows
Server-based.

It is not recommended to assign a public IP address unless necessary as this exposes
the server directly to the internet. VMs should be created on virtual networks that are
private and accessible by authorized personnel. If connecting via on-premises to Azure,
the assumption is that Express Route or a private VPN will be used so that the VM will
be seen as if it was on-premises.

• If needed, open ports for accessing the VM, such as RDP (3389) or SSH (22).

• For most implementations of SQL Server, use a single virtual network interface
card (vNIC), which is the default configuration. One vNIC is not a single point of
failure as the underlying Azure network infrastructure is highly redundant and
there are means such as Availability Sets and Availability Zones to ensure that VMs
themselves will not be single points of failure.

• The VM relies on core elements of infrastructure such as DNS, to work properly.
Even in a hybrid solution that would span on-premises and Azure, ensure that
those key elements exist both on-premises and in the cloud.

Licensing SQL Server in Azure

Last, but not least, a major consideration for how you deploy in Azure relates to cost.
All VMs deployed in Azure must be properly licensed even if what is inside is technically
free. There are two aspects of licensing that must be accounted for: the OS and SQL
Server.

Your choice of supported Linux distribution for SQL Server will dictate whether you
need a paid license. For example, RHEL does require a license. All of the options are
documented at the Red Hat on Microsoft Azure21 page on Red Hat's website. Consult the
Red Hat Linux Enterprise Server section at that link. Windows Server always needs to be
licensed.

https://red.ht/2A8ItRQ

Deployment choices for IaaS | 41

When it comes to SQL Server editions, Standard, Enterprise, and Web editions always
require a license. SQL Server Developer and Express are technically free, but do have
a license, and there may be restrictions regarding use. For example, Developer edition
cannot be used for production workloads.

There are two models for licensing SQL Server in Azure: bring your own license (BYOL),
or pay for the license as part of the cost of the VM, known as pay-as-you-go. For
pre-built images with SQL Server, both options are often feasible. As of the time of
writing this chapter, BYOL images are only an option for Windows Server-based SQL
Server images.

If you are migrating to Azure or have unused licenses and also have Software Assurance,
the Azure Hybrid Benefit for SQL Server allows you to use existing on-premises
licensing and apply it to an IaaS VM. This can potentially reduce the cost of an IaaS VM.

There is a new Azure-specific licensing benefit introduced with SQL Server 2019 if you
have Software Assurance: the ability to run a VM that has a standby server for disaster
recovery. For example, if you have an on-premises Always On availability group and
want to add an asynchronous replica in Azure, it is now free. This could represent a
significant cost saving and can even be seen in the Azure portal, as shown in Figure 2.7:

Figure 2.7: Licensing info from the Azure portal for a Windows Server-based VM

Full licensing information for SQL Server can be found on the Microsoft websites for
on-premises pricing22 and SQL IaaS pricing23, as it will factor into the VM hardware
choice and its cost since each SQL Server VM is usually licensed per virtual processor.
More on choosing a VM size is covered in the next section.

https://bit.ly/2yuFhj5
https://bit.ly/3eeClq7

42 | Getting started with SQL Server on Azure Virtual Machines

Azure VM hardware options
VMs have a virtualized processor, memory, and storage. Processor and memory factor
into the VM type and its choice of size. Storage is influenced by the VM type and
size, but has its own parameters. This section will introduce the basics of VM types,
sizes, and storage. Performance will be touched upon as this is a crucial element of
configuring a VM and will be discussed further in Chapter 5, Performance.

VM types and sizes

This section will contain information about the different types and sizes of IaaS VMs
available in Azure.

VM types and series

VMs in Azure come in different types and sizes. Within each major VM type, the size
maps to what is known as a series, such as D, E, and G. Each series has different sizes
with different specifications. The following table lists the different VM types and their
purpose:

Figure 2.8: Different VM types with their recommended usage

VM Type Comments

General purpose A good "all-rounder" VM but is not designed to stand out in any one
manner. Everything is fairly balanced.

Compute optimized
These VMs have a high CPU-to-memory ratio (for example, an F
series with 32 cores and 64 GiB of memory) meaning a higher density
of compute power with a good amount of memory, but not a ton.

Memory optimized

These VMs have a high memory-to-CPU ratio. A VM with a lower
vCPU count will most likely have more memory than its compute
optimized counterpart. For example, an E-series with 20 vCPUs and
160 GiB of memory.

Storage optimized These VMs are designed to emphasize better disk performance and
will be discussed more in the next section, "Storage".

GPU
These VMs are meant for VMs that have high video or graphics
use which would not be a SQL Server trait, so that is not a
recommended type.

High performance
compute

These are not recommended for SQL Server since Remote Direct
Memory Access (RDMA) is not certifi ed for in-guest storage in Azure.

Azure VM hardware options | 43

VM resources can be reserved and guaranteed by paying for a reserved instance. There
is also the option to use dedicated hosts for the VMs, which would isolate performance
further. Spot VMs allow you to use capacity in Azure, but if Azure needs those
resources, the VM can be evicted. For that reason, a Spot VM is not recommended for
permanent production SQL Server workloads. More information on Spot VMs can be
found in the documentation in the Use Spot VMs in Azure24 section.

VM size

Within each VM type category, there will be multiple VM sizes available, each with
different capacities and limitations. Some VMs may not be available due to regional
restrictions, subscription policies and constraints, quotas, and suchlike. The region(s)
and VM sizes that you will be able to use may also depend on your company's standards
as well as any policies they may put in place that could restrict how, what, and where
things are done.

Note

Consult Microsoft Docs25 to learn more about the details of the different VM types,
the sizes currently available, the types of processors used for each, and their
limitations.

How to choose a VM for SQL Server

Choosing a VM type and size depends on the database workload. This means that you
need to know about the application and/or database profiles. Do you currently use a
lot of CPU but not as much memory? Do you use more memory but not as much CPU?
Do you pound your disks a lot on-premises and need a certain amount of guaranteed
IOPS? A mixture of the above? These are the types of questions you will need to answer
in order to pick the right type and size. The best way to know is to profile, baseline, and
benchmark your application's workload to understand how it is using SQL Server and
the underlying server.

Furthermore, a specific VM size will limit the amount of resources and the limitations
are a hard cap. Once you hit it, that limitation cannot be upped with that VM size.
To increase a limitation, the VM will need to be resized to a larger VM with minimal
downtime.

https://bit.ly/2ZBghlE
https://bit.ly/2LTjvJ7

44 | Getting started with SQL Server on Azure Virtual Machines

Consider this example: as of the time of writing this chapter, there is a memory-
optimized type VM size of Standard_E20s_v3/Standard_E20as_v4 that has 20 vCPUs,
160 GiB of memory, and up to eight virtual network cards with up to 8,000 Mbps speed.
Storage aspects will be discussed in the next section.

A VM's number of vCPUs is static. Unlike using a hypervisor on-premises, what you
select is what you get. If you need 17 vCPUs, the current minimum size for a memory-
optimized VM that could be used would be the Standard_E20s_v3/Standard_E20as_
v4. A Standard_E16s_v3/Standard_E16as_v4 has 16 vCPUs; it cannot be configured to
have more. Read the descriptions in the link in the earlier side note for descriptions on
the underlying CPUs, their speeds, manufacturers, and so on in order to make a correct
determination of which type and size of VM to use. For example, while the Ev3 VMs are
based on Intel processors, Eav4 VMs feature the AMD EPYC(TM) 7452 processor.

The same is true for memory. If you require 256 GiB of memory for a memory-
optimized VM but only need 17 vCPUs, you must step up to the Standard_E32s_v3/
Standard_E32as_v4, which has 32 vCPUs and the amount of memory required. You
cannot add memory to an E20s/E20as. And if you require 2,000 GiB of memory but
you only need 64 vCPUs, the Standard_Ea96s_v4 VM with 96 vCPUs would provide you
with the right amount of memory. In both scenarios, to get more memory, a bigger VM
must be selected.

The VM of choice must also account for the network throughput required. If you are
planning on implementing a feature such as an availability groups for a busy database,
you should know how much throughput you will need to ensure that the network will
not become a bottleneck.

VMs can be resized to be bigger or smaller; however, downtime will be incurred. Plan
accordingly.

Azure VM hardware options | 45

Storage

This section will cover storage concepts for IaaS.

Disk types

There are five types of disks that a VM can use:

• Standard HDD

• Standard SSD

• Premium SSD

• Ultra Disk

• Temporary storage

Detailed information about the different types of disks and their limitations can be
found in the documentation topic What disk types are available in Azure?26, but their
names are self-explanatory.

For SQL Server production workloads, Standard HDD and Standard SSD are generally
not recommended. While they are less expensive, they often do not provide enough
performance for demanding applications. Most SQL Server workloads will perform well
on properly configured VMs using Premium SSD or Ultra Disk. Premium SSD also has
a feature called Azure blob cache, which can improve performance. How it works is
detailed in the blog post Azure Premium Storage, now generally available 27. Ultra Disk is
the fastest and most expensive storage, but may not be available in all regions or for all
VM sizes. In addition, it may have to be enabled for the subscription. A sample message
is shown in Figure 2.9, where there is some sort of restriction for Ultra Disk:

Figure 2.9: Ultra Disk not available for use

Sometimes, in order to attain the performance needed, multiple disks need to be
configured and then, inside the VM, grouped together with Storage Spaces (Windows
Server) or using the Linux tools to create a single logical volume from two physical disks
presented.

https://bit.ly/3ekIpNZ
https://bit.ly/2LVFCOZ

46 | Getting started with SQL Server on Azure Virtual Machines

Disk capacity

Disk types are one piece of the storage puzzle. The other is size, or capacity. Each disk
type has different sizes of disks to choose from. For example, as of the time of writing
this chapter, Premium SSDs have sizes with names such as P30 and P40. Each one has
different maximum specifications. For example, a P30 disk today has a maximum size of
1,024 GiB and a P40 2,048 GiB.

If your database size and projected growth exceeds the smaller size, but is less than the
next one, you will need to purchase the larger size. This means that if your database is
over a terabyte in size (a P30), but less than two (a P40), you will need to consider a P40
if you wish to configure a single disk. There are other ways to achieve capacity greater
than a terabyte that will be described in the following sections.

Storage performance

Storage performance is different, but a completely related concept. Part of choosing the
right disk configuration is understanding your performance requirements. Also similar
to VMs and deciding what type, series, and size to choose for the right processor and
memory, you must choose your disk configuration based on the performance required
because the limits are rigid. The preceding link documents accurate guidelines for the
performance you can expect from each type of disk in certain categories.

Not all parameters are documented for the different disk types. For example, a disk
rated at a specific speed will deliver up to that for whatever kind of I/O was tested, but
it may not work well with your workload. Always test to ensure that you are getting the
performance required before going into production with your workload.

Consider this example: as of the time of writing this chapter, a single P30 can sustain
up to 5,000 IOPS at 200 MiB/sec, and the larger P40 disk, 7,500 IOPS at 250 MiB/
sec. If you have a database that requires half a terabyte of space but needs 15,000
IOPS or a sustained 450 MiB/sec, you are possibly looking at the equivalent of a P60 if
using a single disk or configuring multiple smaller disks (either to look like one disk or
spreading the database across those disks).

Azure VM hardware options | 47

There is a second and equally important aspect that gates storage performance: the VM
type and size. Each VM is rated for storage throughput. A disk with higher throughput
ratings can be attached to a VM that has lower throughput, but the storage will only run
as fast as allowed by the VM type and size.

Assume that you are using a Standard_E20s_v3 VM. For storage, it can have a
maximum of 32 data disks, 320 GiB of temporary SSD storage (which has a ceiling
of 40,000 IOPS/320 MBps of throughput with 400 GiB of cache), and a maximum of
32,000 IOPS/480 MBps of throughput for the VM outside of temporary storage.

If your current production workload needs nearly a gigabyte per second of throughput,
the E20s will not do it. Assuming you want to stick with an E-series VM, you would
be looking at a size of E48s or E64s. The limit of 480 MBps for the E20s is hard; the
VM will never achieve more. Looking at the choice of disk, a single P60 would come
in at half the amount of IOPS that an E20s VM could achieve. The VM would not let it
achieve more than that figure of 480 MBps. This means that the single P60, rated at
500 MBps, could never hit that. You could use two P80 disks to achieve 40,000 IOPS,
but would still be capped at a maximum throughput of 480 MBps, even though each
P80 disk is rated at 900 MiB/sec. Choosing a VM hardware is about making trade-offs
and compromises. Similar considerations would apply to the EAs VM series, even if the
throughput information you can find in the documentation will be different.

Another restriction is that certain VM sizes cannot use premium disk types, which also
may factor into what VM you use. If you're using the Azure Marketplace, you will see a
message similar to the one in Figure 2.10:

Figure 2.10: Error message when trying to use Premium SSD

48 | Getting started with SQL Server on Azure Virtual Machines

If you are using a Windows Server-based Marketplace image pre-installed with SQL
Server, you can select the type of workload and get some assistance optimizing the
storage configuration, as shown in Figure 2.11:

Figure 2.11: Storage configuration pane in the Azure portal

Summary | 49

Note that what has been discussed previously is also seen at the bottom in the warning
where you may not get the throughput needed and the limitation of the number of
disks. Another good aspect to being able to configure this at the time of provisioning
the VM is that you can enforce standards for things such as drive letters and data and
transaction log file folders.

Ephemeral storage and SQL Server data and transaction log files

Each VM has temporary, also known as ephemeral, storage. Anything configured on this
storage is lost if the VM is shut down or rebooted. Therefore, it is not recommended for
SQL Server data or transaction log files for application or user databases.

The only potential use for ephemeral storage is TempDB. TempDB is recreated
every time SQL Server is restarted, so by the nature of its design, what is in it is not
permanent.

There is one caveat if you choose to use this storage for TempDB: the size of the
ephemeral disk is fixed and can never be expanded. The only way to make it bigger is to
choose a different VM size. That also means that performance cannot be greater than
what the VM allows for that disk without resizing. If you know that your TempDB usage
meets size and performance requirements, you can consider ephemeral storage since it
generally performs better for some things, including 8 KB writes.

Storage-optimized VMs use local non-volatile memory express (NVMe) storage that is
ephemeral. If the VM is rebooted, anything configured on the temporary disk is lost.
This means that storage-optimized VMs as they are configured as of the time of writing
this chapter are not recommended for SQL Server use.

Summary
Choosing a VM type, size, and its associated virtual hardware is no different to planning
and deploying a physical server or VM on-premises. You have to account for CPU,
memory, networking, and storage. While this chapter covered the basics of deploying
an IaaS-based VM for SQL Server in Azure, there are many more considerations, such
as availability and security, that must also be considered as part of an overall solution.
Subsequent chapters will discuss those topics and more.

50 | Getting started with SQL Server on Azure Virtual Machines

Chapter links
1. https://bit.ly/2ZFMfx7

2. https://bit.ly/3d4oiDw

3. https://bit.ly/3gkCUkc

4. https://bit.ly/2X1burV

5. https://bit.ly/2LXSYdK

6. https://bit.ly/2TB4sHY

7. https://bit.ly/2A4dsP6

8. https://bit.ly/2zi0ai5

9. https://bit.ly/2zi0hdv

10. https://bit.ly/36rGrIE

11. https://bit.ly/3d1Xyn4

12. https://bit.ly/2ZBerkK

13. https://bit.ly/2Xuj0dI

14. https://bit.ly/2TDBFTh

15. https://bit.ly/2A4evyw

16. https://bit.ly/2XpdV6s

17. https://bit.ly/3ei9MZ2

18. https://bit.ly/2LXkA2p

19. https://bit.ly/2WXTFde

20. https://bit.ly/3bXoIKx

21. https://red.ht/2A8ItRQ

22. https://bit.ly/2yuFhj5

23. https://bit.ly/3eeClq7

24. https://bit.ly/2ZBghlE

25. https://bit.ly/2LTjvJ7

26. https://bit.ly/3ekIpNZ

27. https://bit.ly/2LVFCOZ

https://bit.ly/2ZFMfx7
https://bit.ly/3d4oiDw
https://bit.ly/3gkCUkc
https://bit.ly/2X1burV
https://bit.ly/2LXSYdK
https://bit.ly/2TB4sHY
https://bit.ly/2A4dsP6
https://bit.ly/2zi0ai5
https://bit.ly/2zi0hdv
https://bit.ly/36rGrIE
https://bit.ly/3d1Xyn4
https://bit.ly/2ZBerkK
https://bit.ly/2Xuj0dI
https://bit.ly/2TDBFTh
https://bit.ly/2A4evyw
https://bit.ly/2XpdV6s
https://bit.ly/3ei9MZ2
https://bit.ly/2LXkA2p
https://bit.ly/2WXTFde
https://bit.ly/3bXoIKx
https://red.ht/2A8ItRQ
https://bit.ly/2yuFhj5
https://bit.ly/3eeClq7
https://bit.ly/2ZBghlE
https://bit.ly/2LTjvJ7
https://bit.ly/3ekIpNZ
https://bit.ly/2LVFCOZ

While platform as a service (PaaS) databases such as Azure SQL Database have many
upsides, the most common SQL Server deployment method on Azure is in an IaaS
virtual machine (VM). The typical reasons for this are that partner software may not
support PaaS options, or that you may need to work on older versions of the SQL Server
engine. Another common scenario is when an organization chooses to run another
SQL Server component, such as SQL Server Integration Services (SSIS), alongside
the database engine. Some of the other included features that may be used include
PolyBase, which allows data virtualization to other data sources such as MongoDB,
Oracle, or Teradata. Also, Machine Learning services allows users to execute R, Python,
or Java scripts side by side with SQL Server. While this architecture may not offer the
best performance, it does maximize the value of licensing. In this chapter, you will
learn about:

Hero capabilities of
SQL Server on Azure

Virtual Machines

3
By Joey D'Antoni

54 | Hero capabilities of SQL Server on Azure Virtual Machines

• Configuring your VMs to be highly available.

• Monitoring performance over time.

• Optimizing disk layout for SQL Server on Azure VMs

• Benefits of SQL VM resource provider

• Managing your SQL Server estate in Azure.

• Using Azure Active Directory managed identities.

• SQL Server 2019 security features.

Understanding platform availability in Azure
It is important to understand that the Azure infrastructure is built and designed to
be highly available, but just like in every computer system, there are failures that can
happen. Azure offers you a couple of different ways to build resiliency within your
infrastructure. Azure is made up of regions and spread across geographies, as shown in
Figure 3.1:

Figure 3.1: Azure regions throughout the world

Understanding platform availability in Azure | 55

A geography is a designation that ensures that data residency respects geopolitical
boundaries and meets any data sovereignty. A geography is typically defined by the
borders of a country (typically Microsoft won't add a region without adding two regions
in a given country); however, there are a few exceptions, such as Brazil South, which is a
single region within a single country.

Also, Azure will always define regional pairs within its infrastructure. This is an
important concept in terms of the overall availability of the platform. Azure paired
regions have a few important concepts to take note of:

• If you are using geo-redundant storage, it will be replicated to the paired region
(you don't get to choose the target).

• Microsoft performs updates of the infrastructure in a serial fashion across paired
regions so that in the event of an update failure, the failure will not cascade.

• Paired regions are at least 500 kilometers/300 miles apart where possible so that
they are protected from natural disasters.

• Finally, in the event of a major Azure outage, Microsoft will prioritize the recovery
of one region out of every pair.

If you are using IaaS, you do not have to deploy your resource to paired regions for
disaster recovery, but it may be in your best interest to do so as it might provide you
with the highest levels of availability.

While each region is made up of multiple physical datacenters, the lowest level of
granularity you have when you are deploying Azure services is the region. This means
that in the event of a physical outage in a datacenter, your application could incur
downtime if you do not have a disaster recovery solution in a second region.

56 | Hero capabilities of SQL Server on Azure Virtual Machines

Availability Zones

In 2017, Azure introduced Availability Zones, which allow you to split workloads between
physical datacenters. When you deploy a VM resource to an Availability Zone, you have
the choice of deploying to zone 1, 2, or 3, which can spread your workloads across
multiple datacenters in a given region, as shown in Figure 3.2:

Figure 3.2: Availability Zones

Availability Zones have separate power, network connections, and cooling in order to
prevent a single physical failure from taking down your workloads. While Figure 3.2
and the portal will always present you with three logical Availability Zones, in actuality
each region that has Availability Zones is divided up into four physical zones—the
zones you choose in the portal while ensuring that your workload is placed in different
datacenters within the region are not tied to a specific datacenter every time. For
example, my deployment to Zone 1 in the East US 2 region may not be in the same
datacenter as your deployment to Zone 1 in the same region.

Understanding platform availability in Azure | 57

While network latency between datacenters in a region is low, it is important to test
that latency before deploying your workloads, as some regions will have higher latency
between zones than others. This could affect SQL Server when deploying a technology
such as Always On availability groups; you might choose to use synchronous replication
if the latency is less than one millisecond for a critical transaction processing
application. On the other hand, if the latency is higher, you might risk some data loss
with asynchronous replication. It is very important to test the latency between your
VMs before deploying your architecture.

Availability sets

In addition to Availability Zones, Azure also has availability sets, which provide
availability within a datacenter within a region. A simple way of thinking about this is
that if you have three VMs in an availability set, they are all deployed to different racks
within the datacenter. In reality, it is more complex than that, with Azure being broken
down into update domains, which allow the infrastructure to be updated, and fault
domains, which provide isolation to single points of failure in the core infrastructure.
This, combined with managed disks, offers 99.95% uptime for multi-VM deployments.

Figure 3.3: Availability set configuration

58 | Hero capabilities of SQL Server on Azure Virtual Machines

If you are deploying Always On availability groups or Failover Cluster Instances, you will
need to deploy them into an availability set or into an Availability Zone. This is required
in order to configure the internal load balancer, which will act as the IP address for the
availability group's listener (the virtual IP address that users and applications use to
connect directly to the availability group).

While all these solutions provide high availability, none of them protect against regional
disasters. One of the benefits of using the public cloud is the ease of putting workloads
in multiple regions to protect against natural disasters or regional failure.

Disaster recovery options for SQL Server in Azure
The first step in any good disaster recovery plan is having reliable and redundant
backups. SQL Server and Azure work together to make this simple—SQL Server 2012
(specifically Service Pack 1, Cumulative Update 2) onward has supported backing up
directly to Azure Blob storage through the BACKUP TO URL syntax. This feature was
enhanced in SQL Server 2016 and supports backups larger than 1 TB, and striping
the backup to improve performance. Commonly used tools such as the built-in
maintenance plans and Ola Hallengen's maintenance scripts support backing up to
Azure Blob storage.

Note

While backup to URL is supported in tools, you should note that neither
maintenance plans nor Ola Hallengren's scripts support the pruning of older
backups. A common workaround for this is to add an SQL Server Agent job step
that removes the older backup files upon completion of your backup tasks.

Additionally, you have to use Azure Backup for SQL Server, which builds on top of the
Azure Backup service and actively manages your older backups. Azure boosts your
availability by providing Geo-Redundant Storage (GRS) accounts, which provide two
copies of each backup file stored in a highly available fashion (Azure Storage doesn't
use traditional RAID patterns, instead requiring three copies of a file within a region
for a write to be considered complete) in two different regions. This replication is
asynchronous, which makes it well suited for backups, but not for the storage of SQL
Server data files.

Disaster recovery options for SQL Server in Azure | 59

Beyond backups

In addition to backups, you should capture your configuration's ARM templates and any
SQL Server configuration that exists outside of your databases (cluster configuration,
quorum drives) in your source control system. This provides for budget-conscious
customers who do not want to have a real-time secondary replica of their database.

Another low-cost (and simplified configuration) option is to use Azure Site Recovery
to protect your workloads. Azure Site Recovery replicates your VMs using block-level
storage replication from one Azure region to another. There is no need for the target
region to be online, which helps reduce the compute costs. Your recovery data is stored
in a storage vault in the secondary regions. Azure Site Recovery is priced at $25 USD
per instance per month (an instance in this scenario is a VM).

Figure 3.4: Azure Site Recovery Architecture

Azure Site Recovery is not the disaster recovery solution for all workloads—you could
potentially lose somewhere between 5 and 60 minutes of data, depending on the
failure mechanism. However, it is very cost effective and very simple in terms of setup
and management. For high availability and disaster recovery solutions with a lower
Recovery Time Objective (RTO) and Recovery Point Objective (RPO), most customers
are going to use either Always On availability groups or log shipping techniques.

60 | Hero capabilities of SQL Server on Azure Virtual Machines

Always On availability groups

Introduced with SQL Server 2012, Always On availability groups provide both high
availability and disaster recovery by allowing synchronous and asynchronous
replication between one or more database(s). Additionally, availability groups allow
reads to take place on the secondary replicas, allowing you to scale your architectures
to put replicas closer to end users or behind a load balancer for general reporting.
In SQL Server 2019, you can have up to five synchronous replicas in your availability
group (and up to eight total replicas). Synchronous and asynchronous in this context
refer to the process of transaction hardening. When an availability group is running in
synchronous mode, a transaction is not considered complete on the primary replica
until it reaches (and is hardened into) the transaction log of the secondary replica(s). In
most configurations, the transaction is considered committed when it reaches the first
replica; however, there is an optional required_copies_to_commit setting that provides
additional data protection by ensuring the database transaction reaches additional
replicas.

Figure 3.5: Always On availability group architecture

Disaster recovery options for SQL Server in Azure | 61

Synchronous replication is typically used when the servers are in the same physical
location. In Azure, this would mean that if your VMs are in the same Azure region,
synchronous replication would be your choice. The introduction of Availability Zones
does add some complexity to this design, as the network latency between zones, while
typically low, can differ in different Azure regions. There is no hard-and-fast rule for
when to choose synchronous over asynchronous replication, but you should typically
consider 10 milliseconds of latency to be the absolute upper limit for synchronous
replication. Depending on the nature of your application and its sensitivity to latency
(for example, a stock trading application would be extremely latency sensitive, whereas
a business intelligence reporting system could tolerate some levels of latency), you may
require much lower latency than that.

The other component of synchronous replication is that it is required for automatic
failover. SQL Server will not allow you to lose data without accepting the potential data
loss, and any asynchronous replication solution will allow you to lose transactions that
have committed to the primary database but have yet to reach the transaction log on
the secondary database.

While availability groups have typically been deployed in conjunction with Windows
Server failover clusters, if you are running SQL Server on Linux it uses Pacemaker
as its clustering component. You can learn more about configuring SQL Server with
Pacemaker here1. Finally, you can build an availability group with no clustering software;
however, this architecture is typically used as a read-scale option, as it does not provide
the same levels of automated failover that a clustering solution would.

https://bit.ly/2X0VExf

62 | Hero capabilities of SQL Server on Azure Virtual Machines

Differences with availability groups in Azure

In general, configuring SQL Server VMs in Azure is very similar to on-premises VMs
or even physical servers. There are a couple of differences, which will both be covered
in this chapter—storage and networking. Availability groups use a listener, which is an
alias, and an IP address to direct connections into the availability group. The listener
will route traffic to the primary replica of the group and, optionally, route read-only
traffic to replicas. The listener relies on gratuitous Address Resolution Protocols
(ARPs), which can broadcast MAC addresses to IP addresses, which reassigns the IP
in the event of failover. Since Azure virtual networks do not support gratuitous ARPs
(they do not allow broadcasting for security purposes), you need another mechanism to
assign a "floating" IP address.

Note

Azure provides a number of ways to deploy VMs. You have the option to use
PowerShell, the Azure portal, the Azure command-line interface (CLI), or ARM
templates. You can quickly get started with an availability group by using the
quickstart templates2.

In Azure, this floating IP addressed is managed by the internal load balancer (ILB),
which acts as a front end for your availability group listener (and can also act as a
front end for your clustering software). A load balancer has a relationship with your
virtual network, and then a back-end pool of targets, which in an availability group
scenario are your SQL Server instances. There are some differences in ILBs, depending
on whether you are using availability sets or Availability Zones as your protection
mechanism. If you are using sets, you can use a Basic load balancer, while Availability
Zones require a Standard load balancer. You can find the steps to create a load balancer
at this Microsoft documentation3. For SQL Server on Linux, you will not need to run the
PowerShell steps to register the listener into the cluster, but you will need to associate
the Pacemaker cluster with the IP address of the listener.

The additional complication for availability groups is the disaster recovery architecture
that spans Azure Virtual Networks. This configuration is referred to as a multi-subnet
availability group, and it is a fairly common on-premises configuration. In Azure, you
simply have to create an ILB for each virtual network where you have availability group
replicas. There are also some recommended DNS changes for this type of configuration.
You can read more about how to configure for multiple subnets here4.

https://bit.ly/2WXwu2G
https://bit.ly/36rHusa
https://bit.ly/3c2Z2vX

Disaster recovery options for SQL Server in Azure | 63

Availability groups for read-scale workloads

One of the key capabilities of Always On availability groups, in addition to offering
a high availability/disaster recovery solution for SQL Server, is the provisioning of
readable secondary copies of the database. This can be used in conjunction with read-
only routing and the load balancing functionality in SQL Server to spread traffic over
multiple readable secondary replicas. You can use this functionality to place copies of
the database closer to your end users, or to offload the reporting of the primary replica
and add secondary copies locally.

SQL Server on Azure VM resource provider

When you deploy an SQL Server VM from Azure Marketplace, as seen in Figure 3.6, part
of the installation process is the IaaS Agent Extension.

Figure 3.6: SQL Server VM creation from Azure Marketplace

64 | Hero capabilities of SQL Server on Azure Virtual Machines

Extensions are code that is executed on your VM after deployment, typically to perform
post-deployment configurations, such as installing anti-virus or installing a Windows
feature. The SQL Server IaaS Agent Extension provides four key features that can
reduce your administrative overhead:

• SQL Server Automated Backup: This service automates the scheduling of your
backups on the VM. The backups are stored in Azure Blob storage.

• SQL Server Automated Patching: This VM setting allows you to configure a
patching window in which Windows updates to your VM can take place. Only
SQL Server updates that are pushed down through the Windows Update process
will be applied. At the time of writing, that is limited to SQL Server GDR updates,
which means in order to keep your SQL Server VM fully patched, the DBA needs to
install cumulative updates to SQL Server.

• Azure Key Vault Integration: This integration enables you to use Azure Key Vault
as a secure storage location for SQL Server certificates, backup encryption keys,
and any other secrets, such as service account passwords.

• License Mobility: You can change your license type and edition of SQL Server and
switch from pay-as-you-go to pay per usage, Azure Hybrid Benefit (AHUB) to
use your own license, or disaster recovery to activate the free disaster recovery
replica license.

Disaster recovery options for SQL Server in Azure | 65

In addition to these features, the extension allows you to view information about your
SQL Server's configuration and storage utilization, as shown in Figure 3.7:

Figure 3.7: SQL VM configuration in the Azure portal

66 | Hero capabilities of SQL Server on Azure Virtual Machines

Performance optimized storage configuration

VMs registered with SQL VM resource provider can automate storage configuration
according to performance best practices for SQL Server on Azure VMs through the
Azure portal or Azure Quickstart Templates when creating an SQL VM. Best practices
are detailed below:

• Separating data and log files to different volumes makes a difference on Azure
because data and log files have different caching requirements. This feature can
be automated when storage is configured through the Azure portal or Azure
Quickstart Templates. Hosting data and log files on the same drive is supported
only for general-purpose workloads; separate drives are the default configuration
for OLTP and DW workloads.

• The performance of TempDB is critical for SQL Server workloads because SQL
Server uses TempDB to store intermediate results as part of query execution. The
local storage (D: drive) available to Azure VMs has very low response times and is
included in the cost of the VM. Hosting TempDB on local storage has significant
price/performance advantages if the size and the storage scale limits of the VM
are sufficient for the workload. Measure the I/O bandwidth needed to meet
the demands of workloads and test to find the required storage capacity for the
TempDB. If the local storage capacity on the VM is not enough for the workload's
TempDB requirements, consider hosting TempDB on Premium SSD or ultra disks
to get very low response times. Performance-optimized storage configuration
automates hosting TempDB on the local storage of the VM. SQL VM resource
provider automates the re-configuration required after a restart, allaying concerns
about failovers and VM restarts. Hosting TempDB on the local disk is the default
configuration for OLTP and DW workloads and is supported for general-purpose
workloads.

• Azure ultra disks deliver high throughput, high I/O Operations Per Second
(IOPS), and consistent low-latency disk storage for Azure VMs. When storage
latencies bottleneck, use ultra disks to increase the throughput. Premium
disks have great price/performance advantages with read-only caching and a
low-end monthly storage cost. If workloads require storage response times at the
microsecond level, use ultra disks as they provide consistent sub-millisecond read
and write latencies at all IOPS levels (up to 160,000 IOPS). Leverage ultra disks to
optimize storage performance for log files or TempDB files (if the local disk on the
VM does not have enough capacity). For read-heavy TPC-E type workloads with
limited data modifications, increase throughput by hosting data files on ultra disks.
Performance-optimized storage configuration supports using ultra disks to host
data, log, and TempDB files through the Azure portal. Azure Quickstart Templates
can also deploy an SQL VM with a log file on an ultra disk.

SQL Server performance in Azure VMs | 67

• SQL Server images on Azure Marketplace come with a full and a default
installation of SQL Server. SQL Server Database Engine-only images work for
SQL Server 2016 SP1, SQL Server 2016 SP2, and SQL Server 2017 Enterprise and
Standard editions. Those images can be used to create an SQL VM through
the Azure portal, PowerShell, or ARM template deployments. Use the free
manageability to simplify SQL Server administration and the performance-
optimized storage configuration to boost SQL Server performance on Azure VMs
by creating a new SQL VM through the Azure portal or by registering with SQL VM
resource provider today.

SQL Server performance in Azure VMs
Many customers are concerned about how their critical workloads will perform after
migrating to the public cloud. Given the multitude of VM types available within Azure,
there is an extremely wide range of performance options. You can build a VM that's
as small as 1 CPU and 0.75 GB of RAM all the way to 416 vCPUs and 12 TB of memory.
Beyond that, each VM has a specific limit on storage and network bandwidth and
the number of IOPS that the VM can perform. It is important when you are planning
a migration to monitor your on-premises workloads so that you can make your
Azure footprint the right size. This is particularly important for a relational database
management system (RDBMS) such as SQL Server, which is I/O and memory intensive
and does not offer easy horizontal scale options such as a web or application tier.
Typically, if you have to increase the performance of SQL Server, you have two choices:
purchase more hardware or optimize your queries.

One complication of the public cloud is the number of CPU cores aligned with the
amount of RAM in a given VM. SQL Server is an application that is heavily dependent on
RAM for its performance—throughout the database engine, memory is used to prevent
calls to disks that are orders of magnitude more expensive. While having additional
vCPU cores will not harm performance in an Azure environment, because SQL Server
is licensed by the core, it can create a great deal of additional expense. Microsoft has
identified this as an issue and offers a number of constrained core VMs for database
workloads. You can identify a constrained core VM by its nomenclature—for example,
in Standard_M64-16ms, M identifies the VM class, 64 identifies that this VM would
typically have 64 vCPUs, and the -16 indicates that the VM is constrained to 16 cores.
The full list of constrained core VMs is available here5. The compute costs for these VMs
are the same as if they were unconstrained, but you are not responsible for licensing
SQL Server for those non-allocated cores.

https://bit.ly/3cZDIss

68 | Hero capabilities of SQL Server on Azure Virtual Machines

Azure Storage

While compute sizing is relatively straightforward, building Azure Storage for
performance is slightly more complex. Azure VMs should use managed disks for
availability and ease of configuration. Azure offers four types of managed disks to meet
your performance and budgetary requirements:

• Standard storage

• Standard SSD

• Premium storage

• Ultra disks

Standard storage will not meet the performance requirements of SQL Server data and
log files—it is useful for backing up SQL Server databases, along with any typical file
storage that does not require low-latency access. Likewise, standard SSD provides
similar but more consistent performance than standard storage, and should not be used
for workloads as I/O intensive as SQL Server.

This leaves you with premium storage and ultra disks as your options for database
storage. Premium storage typically provides single-digit latency and is particularly
effective for read workloads, as it can take advantage of read-caching to provide even
better performance.

Note

Azure VMs have a local SSD that is mounted on /dev/sdb on Linux, and the D:\
drive on Windows. This disk is ephemeral, and data on it may be lost during
maintenance activities or when you redeploy a VM. It may be used for TempDB in
conjunction with SQL Server, but you should note latency because if you are using
read-caching for your disks, the read cache will exist on that temporary drive and
may cause contention with your TempDB performance.

SQL Server performance in Azure VMs | 69

Premium storage requires more configuration to approach the performance of
ultra disks. A common example is where a database has 2 TB of data but requires
30,000 IOPS. To meet the data volume requirement on premium storage, you could
simply allocate one P40 disk, which has 2 TB but only offers 7,500 IOPs. To meet the
performance requirement, you should consider allocating six P30 disks, which would
have a total of 6 TB of storage but meet the IOPS requirement. In order to achieve this
amount of IOPS with premium storage, you would stripe your data volumes across
the six disks, giving you a volume of 6 TB and meeting the 30,000 IOPS requirement.
You can read more about how to configure this on a Linux VM6 and for a Windows
VM7 at the respective Microsoft documentation links. You should note that there is
no requirement to mirror the disks in an Azure configuration because Azure provides
redundancy at the infrastructure level in order to provide data protection. You should
also note that each VM type has a specific amount of IOPS and storage bandwidth
available to it, and throttling will kick in as the amount of IOPS approaches that
threshold. This applies to all storage types, including ultra disks.

Ultra disks simplify this configuration but are more expensive than premium storage.
Rather than simply paying for each disk based on volume and IOPS, the ultra disk
option charges for each component individually. You choose the volume of the disk,
the amount of IOPS, and the amount of bandwidth for the disk, and the cost is the total
of each of those components. This simplifies the configuration, as you can create a
single disk that meets your capacity and performance requirements. Ultra disks do not
provide caching but can provide performance in the sub-millisecond range for some
workloads and have the most consistent performance under heavy load of any of the
storage options in Azure. The ultra disk option is built using NVMe storage and remote
direct memory access (RDMA) to deliver this level of performance.

Disk layout for SQL Server on Azure

When designing a storage architecture for SQL Server, you should first think about
the ways SQL Server performs I/O. For example, when you write an insert or update
statement, the following activities happen:

1. The data page where the write takes place is updated in memory.

2. The insert or update is directly written to the transaction log.

3. The transaction is marked as complete.

4. Eventually, the data page in memory is flushed to disk, either via the SQL Server
lazy writer process or via a checkpoint.

https://bit.ly/2LYy8dW
https://bit.ly/2WZoLkt
https://bit.ly/2WZoLkt

70 | Hero capabilities of SQL Server on Azure Virtual Machines

As you can see in this example, the most important factor in completing the transaction
is how quickly the write to the transaction log takes place. Another scenario is a query
that needs a great deal of memory to execute a join operation. SQL Server's behavior
is that if the amount of memory it needs is not available, it will spill into TempDB,
effectively treating TempDB like a page file. So, just like the transaction log, it is
important for TempDB's data files to have extremely low latency to meet performance
requirements.

To translate this to Azure Storage, to maximize performance and minimize costs, you
might consider provisioning an ultra disk to host your transaction log and TempDB
files, and premium storage with read-caching to store your data files. If your latency
requirements are lower, you might consider creating two volumes—a premium storage
volume with read-caching enabled, and another premium storage volume without
caching for transaction logs and TempDB.

Backups

Backups are critical in terms of data availability and, as mentioned earlier, SQL Server
supports directly backing up databases into Azure Blob storage. The basics and
troubleshooting guide for this process are in this document8, but we should highlight a
couple of basics. When backing up to Azure (or in nearly all on-premises scenarios), you
should use the WITH COMPRESSION option because it reduces the size of your backups and
shortens both the backup and restore time. If the size of your backups exceeds 1 TB,
you will need to stripe your backup across multiple files and adjust the MAXTRANSFERSIZE
and BLOCKSIZE options, as shown in the following example:

BACKUP DATABASE TestDb

TO URL = 'https://mystorage.blob.core.windows.net/mycontainer/
TestDbBackupSetNumber2_0.bak',

URL = 'https://mystorage.blob.core.windows.net/mycontainer/
TestDbBackupSetNumber2_1.bak',

URL = 'https://mystorage.blob.core.windows.net/mycontainer/
TestDbBackupSetNumber2_2.bak'

WITH COMPRESSION, MAXTRANSFERSIZE = 4194304, BLOCKSIZE = 65536;

In addition to backup to URL, SQL Server supports using Azure Backup, which can
automatically manage your database backups across all of your Azure VMs. Azure
Backup installs an extension called AzureBackupWindowsWorkload, which manages
the backup using a coordinator and an SQL plugin, which is responsible for the actual
backup.

https://bit.ly/2XsY2Mj

SQL Server performance in Azure VMs | 71

Gathering performance information

SQL Server is extremely well-instrumented software and offers you a number of
ways to gather performance data. It uses extensive dynamic management views and
system catalog views that let you retrospectively gather data on the performance of
the database engine. The extended events engine in SQL Server allows you to trace
code execution and isolate specific activities. The Query Store, which was introduced
in SQL Server 2016 and has been continually improved since, allows you to capture
runtime and execution plan information about individual queries to isolate any change
in performance caused by volume changes or parameter changes.

Dynamic management views are covered in detail in Chapter 5, Performance.

Query Store

The Query Store feature has a number of benefits in that it acts as a flight data
recorder for SQL Server. It does have to be enabled, and this action can be performed
either through T-SQL or using SQL Server Management Studio (SSMS) to change the
Operation Mode to Read write, as illustrated in Figure 3.8:

Figure 3.8: Query Store configuration

72 | Hero capabilities of SQL Server on Azure Virtual Machines

The Query Store is configured in each user database; busy databases or databases
that have a lot of dynamic SQL (and therefore unique query strings) can require more
storage. Query Store data exists in the primary filegroup for the individual data so that
it is persisted across server restarts and availability group failovers.

There are also a number of reports built into SSMS that allow you to look at various
perspectives of query performance in the portal. Figure 3.9 shows a view that highlights
the overall resource utilization of a given query and its execution plan:

Figure 3.9: Query Store top resource consumers query view

In addition to being able to quickly identify poorly performing queries, or queries that
have regressed in performance (a feature that can really help you mitigate any risks with
an SQL Server upgrade), the Query Store allows you to force a given execution plan
for a specific query. This can be useful when you have data skew and some parameter
values for a query produce a poorly performing execution plan. This functionality is
also built into the automated tuning feature that was introduced in SQL Server 2017; if a
query's performance regresses, the database engine will revert to the last known good
execution plan in an attempt to resolve the performance issue.

SQL Server performance in Azure VMs | 73

Azure portal

The Azure portal also provides a number of metrics to set a baseline for your VM
workloads. By default, you will see the CPU average, the network bandwidth, the total
disk bytes, and the disk operations per second (read and write) in the Overview blade
for your VM. Data is available for the last 30 days, which is enough to set a solid baseline
of your server's performance over time. This can help you easily find VMs that are over-
or under-provisioned and help you track resources consumed.

In addition to this dashboard, you can allow metrics reporting to go beyond the
performance counters in the Overview pane, as shown in Figure 3.10. This monitoring
infrastructure can also connect to VM metrics, which provides alerting.

Figure 3.10: Azure VM metrics for an SQL Server VM

For example, if you wanted to report when a VM was using over 80% CPU over a period
of 5 minutes, you would create a metric rule and then create an action group to be
notified. You have a number of options as to what to do with the alert—you can do the
standard SMS/email/push notification, or you can connect to a webhook that launches
an action. You can also launch an Azure Automation runbook to carry out a remedial
action within Azure. An example of where you might do this for SQL Server is to kick off
an index report after a period of high CPU utilization.

74 | Hero capabilities of SQL Server on Azure Virtual Machines

Additionally, you collect and aggregate log and performance information from your
Azure VMs using the Azure Diagnostics extension, which can connect to your Windows
and application logs, and aggregate the logs into a number of destinations including
Azure Monitor, Event Hubs, Azure Blob storage, and Application Insights. You can learn
more about this functionality here9.

Activity Monitor

The Query Store is one performance metric gathering option, but SSMS also has
Activity Monitor, which provides an overview of all the activity on the server at any
given time. It includes an overview of the processes running on the server, performance
metrics, resource waits, and data file I/O. You can also customize columns to display
more detailed information to meet your requirements. Below, in Figure 3.11, you can see
Activity Monitor in operation:

Figure 3.11 Activity Monitor in SSMS

https://bit.ly/3bZthDZ

SQL Server performance in Azure VMs | 75

Extended Events

SQL Server contains Extended Events, which is a lightweight performance monitoring
system that can collect as much or as little information as needed to isolate a
performance problem. Extended Events is structured into sessions, which are an
event or group of events that have a target. The targets available for Extended Events
sessions are:

• Event counter.

• Event file.

• Event pairing.

• Event Tracing for Windows.

• Histogram.

• Ring buffer.

• Azure Blob storage (Azure SQL Database only).

The other benefit of Extended Events is that you can use a predicate to limit the
amount of data captured by the engine. SQL Server uses Extended Events sessions to
monitor the health of Always On availability groups and general system health. You can
also trace queries using Extended Events, including capturing actual execution plans.
While this functionality can be helpful for gathering information, it should be carefully
considered as there is a large amount of performance overhead associated with
capturing actual execution plans.

76 | Hero capabilities of SQL Server on Azure Virtual Machines

Management Studio includes two Extended Events sessions under a header called
xEvent Profiler, which is designed to emulate the functionality in SQL Server's Profiler
tool. The xEvent Profiler tool provides a live view of queries streaming into the database
server. This functionality is less intrusive and runs with less overhead than the older
Profiler tool.

Figure 3.12: Azure xEvent Profiler in SSMS

Extended Events is a very deep topic and covers almost all of the functionality in the
database engine. You can learn more about all of the events that are available here10.

https://bit.ly/3grhUID

SQL Server performance in Azure VMs | 77

Identifying disk performance issues with SQL Server

As mentioned earlier in the chapter, disk performance is critical to database systems,
and this can be exaggerated in an Azure environment where latencies may be slightly
higher (for deployments other than ultra disk deployments) than in a high-performance
on-premises environment. There are a couple of different ways to measure I/O
performance on an SQL Server. The first and most common way is to query the sys.dm_
io_virtual_file_stats dynamic management view. You can also query sys.dm_os_wait_
stats to identify what the server is waiting for. High percentages of pageiolatch_xx
waits can be indicative of storage issues. You can also validate the data reported by SQL
Server by capturing data from the Linux iostat command to report on the performance
of the devices. On Windows Server deployments of SQL Server, you can use the built-in
performance monitor (perfmon) capabilities to capture performance data. This post11 on
Microsoft Docs offers more detail on how to identify and troubleshoot a performance
issue.

Key performance features in SQL Server

In addition to the monitoring and metric capabilities that both SQL Server and Azure
provide, SQL Server provides many features that make use of in-memory technology
set to deliver world-class performance:

• In-Memory OLTP tables: An in-memory latchless data structure that delivers
extremely fast insert performance.

• Hybrid Transactional/Analytical Processing (HTAP): This technique combines
filtered non-clustered columnstore indexes with in-memory OLTP tables to
deliver fast transaction processing and to concurrently run analytics queries on
the same data.

• TempDB: The memory-optimized TempDB metadata feature effectively removes
some contention bottlenecks and unlocks a new level of scalability for TempDB-
heavy workloads.

These features are typically implemented in conjunction with new application
development. You can learn more about these features here12.

https://bit.ly/3gnwUXA
https://bit.ly/36tJ9gR

78 | Hero capabilities of SQL Server on Azure Virtual Machines

Security concepts
Azure offers a number of built-in and optional security features that help you build a
more secure environment. There are a number of options, including network security
groups, disk encryption, and key management, that help you ensure your security.
Azure is the most compliant database for your SQL installations. You can read more
about this here13.

Let's examine the specific security features Azure provides:

• Azure Security Center (ASC) is your centralized security management system in
Azure that provides advanced threat protection for your hybrid workloads in the
cloud. Using ASC, you can configure security policies for your VMs, detect threats
to your VMs and SQL databases via real-time alerts, and mitigate them using ASC's
recommendations.

• Advanced data security for SQL Server on Azure VMs is another Azure-specific
security feature. It integrates with ASC and enables the detection and mitigation of
potential database vulnerabilities and threats.

• Key management for encryption is enhanced in Azure using Azure Key Vault
(AKV), which enables you to bring your own key and store it in AKV to manage the
encryption and decryption of your databases.

• In addition to the above capabilities, SQL Server Azure VMs can use automated
patching14 to schedule the installation of important Windows and SQL Server
security updates automatically.

Connecting to Azure VMs

It is important to note that, by default, in the Azure portal, new VMs are created with
a public IP address. This is something you should not do for any SQL Server with
production data, but if you require a public IP address, you should limit the connections
to only the IP addresses that should connect to the VM. When creating this VM, you
also have the option to open ports such as 1433 to the internet.

Note

Opening an SQL Server to the public internet will result in a number of failed logins
from botnets across the world and may impact the performance of the server. It is
something that you should pretty much never do.

https://bit.ly/3efwJf7
https://bit.ly/3c30D4V
https://bit.ly/3c30D4V

Security concepts | 79

Fortunately, Azure provides a number of other ways to connect to your VMs. If you have
a site-to-site VPN or Express Route connection from your on-premises network into
your virtual network, you can connect to your VM just as if it was in your on-premises
datacenter. Azure is just an extension of your datacenter and network once you have
a VPN connection. Once you have a VPN connection in place, connecting to a VM in
Azure is no different than connecting to a server in a different datacenter. Another
option is using Azure Bastion, which is a service that allows a secure connection over
port 443 from the Azure portal into your VM using a desktop emulator.

Network security groups

Azure Virtual Networks can be split into subnets. These subnets allow you to isolate
your network traffic between various application tiers, as shown in Figure 3.13. Network
security groups (NSGs) act as firewalls between these subnets. NSGs contain security
rules that filter network traffic inbound to and outbound from a virtual network
subnet by IP address, port, and protocol. These security rules are applied to resources
deployed within the subnet.

Figure 3.13: Complex Azure network architecture

80 | Hero capabilities of SQL Server on Azure Virtual Machines

As we can see in Figure 3.13, there is a single virtual network divided into six subnets.
Without going into the full detail of the architecture, there is a public IP address that
points to an application gateway, which allows traffic on port 443, and performs SSL
termination. The web tier then points to a business subnet, where traffic is directed to
a load balancer over the port used by the app server. Finally, the data tier allows traffic
only from the business tier into port 1433, and the SQL Server instances have secure
access into a storage account for backups and Cloud Witness. While an NSG can be
applied on the virtual network, subnet, or even individual virtual NIC, they are most
commonly deployed at the subnet level.

Note

Azure Firewall offers some more functionality than NSGs and may be required
for some deployments. You can learn more about the differences between the
services here15.

In the age of ransomware, proper network segmentation is critical to the security
of your data. One of the major benefits of Azure is that you can easily segment your
network without any cabling changes.

Azure Security Center

ASC is a service that helps prevent, detect, and respond to threats with increased
visibility into and control over the security of resources and hybrid workloads in
the cloud and on-premises. It provides integrated security monitoring and policy
management across subscriptions, helps detect threats that might go unnoticed, and
works with a broad ecosystem of security solutions.

Features include:

• Threat protection: ASC's threat protection includes fusion kill-chain analysis,
which automatically correlates alerts based on cyber kill-chain analysis to
better understand attack campaigns, providing details on where they started
and the impact they had on resources. Other capabilities include the automatic
classification of data in Azure SQL, assessments for potential vulnerabilities, and
recommendations for how to mitigate them.

• Secure Score: Secure Score is a feature that reviews security recommendations
provided by ASC and prioritizes them, targeting the most serious vulnerabilities
for investigation first.

• Azure Policy: ASC allows enterprises to define their specific security requirements
and configure workloads through Azure Policy. Recommendations will then be
based on those policies and can be customized as needed.

https://bit.ly/3gkJiIc

Security concepts | 81

• Azure Monitor: Azure Monitor maximizes the availability and performance of
applications and services by delivering a comprehensive solution for collecting,
analyzing, and acting on telemetry from cloud and on-premises environments. As
a security tool, it helps control how data—including sensitive information such as
IP addresses or user names—is accessed.

• Security Posture: ASC uses monitoring capabilities to analyze overall security and
identify potential vulnerabilities. Information on network configuration is available
instantly.

Authentication

SQL Server on both Windows and Linux offer both SQL Server and Windows
Authentication (Active Directory). Active Directory authentication allows users to log in
using a single sign-on without being prompted for a password. This authentication is
provided by using Kerberos based on the connection with the Active Directory domain
controllers. In Windows, this feature is provided by joining your server to your Active
Directory domain. In Linux, the process is slightly more complicated.

To configure Windows Authentication on SQL Server on Linux, you need at least one
domain controller; you have the option of using the realmd and sssd packages on
your Linux VM in order to join the VM to your Windows domain. This is the preferred
method, but you also have the option to use partner LDAP utilities. You can follow
the instructions in this documentation16 to configure your VM for Active Directory
authentication.

SQL Server authentication is configured by default on SQL Server on Linux installations.
While SQL Server authentication is easier to configure, it has a few disadvantages
compared to Windows authentication:

• There is no built-in syncing of logins across servers, and users have to remember
additional passwords.

• SQL Server cannot support the Kerberos protocol.

• Windows authentication offers additional security and password policies that SQL
Server authentication does not support.

• The encrypted password is passed over the network at the time of authentication,
making it another point of vulnerability.

SQL authentication does allow for a wider variety of SQL clients and can be required by
some older applications.

https://bit.ly/3griKVN

82 | Hero capabilities of SQL Server on Azure Virtual Machines

SQL Server security

Beyond authentication, SQL Server provides a robust set of permissions and privileges
to manage security at each layer—server, database, object, and all the way down to
columns. The database engine includes a set of built-in roles and allows logins and
users to be defined at the server and database level. Alternatively, users can be scoped
to a specific database using contained user functionality. This is typically used for
applications that only connect to a single database. You can learn more about the
security features of SQL Server here17.

Advanced data security for SQL Server on Azure VMs

Advanced data security for SQL Server on Azure VMs is a new security feature that
includes Vulnerability Assessment and Advanced Threat Protection. This feature
includes functionality for identifying and mitigating potential database vulnerabilities
and detecting anomalous activities that could indicate threats to your database. Some
of the tools included to perform these tasks are detailed below:

• Vulnerability Assessment18 is an easy-to-configure service that gives you
visibility into your configuration, databases, and data. The tool runs a scan on
your database using a knowledge base of best practices and looks for excessive
permissions, unprotected sensitive data, and misconfigurations. The assessment
products a report that tells you how to remediate the issues that the report finds.

• Advanced Threat Protection19 detects anomalous activities indicating unusual and
potentially harmful attempts to access or exploit your SQL Server. It continuously
monitors your database for suspicious activities and provides action-oriented
security alerts on anomalous database access patterns. These alerts provide the
details of any suspicious activity and recommended actions to investigate and
mitigate threats.

• Integration with ASC provides benefits such as email notifications for security
alerts, with direct links to alert details. You can also explore Vulnerability
Assessment reports across all your databases, along with a summary of passing
and failing databases, and a summary of failing checks according to risk
distribution. Also, you can use ASC to explore and investigate security alerts and
get detailed remediation steps and investigation information in each one.

https://bit.ly/3ddGxGJ
https://bit.ly/2X2HdsO
https://bit.ly/2B2Urxb

Security concepts | 83

Azure Active Directory

Azure Active Directory is not supported in SQL Server (it is supported for Azure SQL
Database and Azure SQL Database managed instances). However, it can play a key role
in some VM automation scenarios. You can create a managed service identity for your
VM—this is somewhat similar to the concept of a service account in Windows.

The following figure illustrates the Azure managed identity configuration process:

Figure 3.14: Azure managed identity configuration

84 | Hero capabilities of SQL Server on Azure Virtual Machines

You can use this identity with a number of Azure services, including Azure Storage and
Key Vault, with the identity of the VM. This can allow you to securely execute scripts
within your VM using the identity of the VM to authenticate itself.

Azure Key Vault

AKV is a security service that helps with management tasks, key access, and certificate
management—all of which are protected by hardware security modules that meet FIPS
140-2 Level 2 requirements. For the sake of simplicity, AKV can be considered as Azure's
password manager. Beyond simply being a password manager, AKV enables granular
access of secrets by applications, services, and monitoring of its own use.

Where AKV integrates with SQL Server is that you have the option to store your Always
Encrypted certificates in a key vault. Additionally, you can store any certificates (for
example, transparent data encryption (TDE), backup certificates, or client connection
certificates) that are used in your SQL Server environment in a key vault.

SQL Server provides a connector for AKV that allows AKV to serve as an Extensible
Key Management solution for storing SQL Server certificates and keys. This provides
a critical backup in case any of those certificates are lost, in addition to securing their
storage. You can learn more about this process here20.

Transparent data encryption

SQL Server provides different types of encryption. The first and most basic is TDE,
which provides encryption at rest for data files. This protects you from an attacker
gaining access to the VM's data drive and taking either backups or data files. The
following figure illustrates the TDE architecture:

https://bit.ly/3c0L8ub

Security concepts | 85

Figure 3.15: TDE architecture

86 | Hero capabilities of SQL Server on Azure Virtual Machines

This meets the common requirement of encryption at rest, and also encrypts backups
by default. This feature was an Enterprise Edition feature until SQL Server 2019, when it
became available in all editions of SQL Server. You can configure TDE at the individual
database level, but you should note that when TDE is enabled for a user database,
it is enabled on the TempDB system database as well. It is important to ensure the
certificates you used when configuring TDE are backed up—without them, you will not
be able to restore a database or attach a database.

In addition to these security features, VMs come with their own security, Azure Disk
Encryption—a feature that helps protect and safeguard data and meet organization
and compliance commitments. So, in the case of TDE customers, they get multiple
encryption protections—Azure Disk Encryption and encryption through the SQL
Database host.

Always Encrypted

While TDE is designed to meet the requirements of encryption at rest, administrators
and users who have access to the database have full access to the unencrypted data,
where it can be consumed and potentially exported in a tool such as Excel. Additionally,
with any other encryption solution, such as SQL Server's cell-level encryption, database
administrators have access to the encryption keys.

Always Encrypted changes this paradigm—the encryption key for the encrypted data is
accessed in the client application and never in the database server. The administrators
have no access to the encryption key, and therefore no access to the unencrypted
values. Having a key management process, such as AKV, enables enhanced separation
of duties to prevent this administrator access. In addition to AKV, options include
Windows Certificate Store on a client machine, or a hardware security module.

Note

You should never generate the keys for your Always Encrypted columns on the
server hosting your database, as anyone with access to the server could potentially
gain access to keys in memory.

Always Encrypted is designed to protect sensitive data. It should be applied as an
additional layer in tandem with TDE and TLS capabilities and should be used very
selectively to protect data such as national ID or U.S. Social Security numbers, or other
sensitive fields, and not broadly across all of your tables and columns. You can see more
examples of how to use the feature here21.

https://bit.ly/2XnXMhE

Security concepts | 87

Since the application client has access to the keys to the VM, if the application executes
the following query, the query will be sent to the database server with the SSN value in
encrypted ciphertext, where it will be executed against the ciphertext in the Patients
table:

SELECT FirstName, LastName FROM Patients WHERE SSN='111-22-3333'

This is shown in Figure 3.13:

Figure 3.16: Always Encrypted architecture

The Always Encrypted architecture shows that a column master key is created for the
application, and a column encryption key is stored in the database. Always Encrypted
offers two kinds of encryption, deterministic and randomized. Deterministic encryption
means the same value will have the same ciphertext every time—this allows GROUP BY,
equality joins, and indexing, among other benefits. While this may be acceptable for
many scenarios, columns that have a small set of possible values can be identified by
guessing. Randomized encryption should be used where data is not grouped with other
data and not where it is used to join tables.

88 | Hero capabilities of SQL Server on Azure Virtual Machines

SQL Server 2019 adds even more functionality to the Always Encrypted feature set by
adding secure enclaves functionality, which allows the database engine to operate on
encrypted data. In earlier versions of Always Encrypted, SQL Server could not perform
computations or pattern matching on the data. An enclave is a protected memory
region within the SQL Server process that can access encrypted data. The keys are
never shown in the engine plaintext during query processing. You can learn more about
secure enclaves here22.

Dynamic data masking

While Always Encrypted protects data via encryption, and data is never stored in an
unencrypted fashion, dynamic data masking does not touch the underlying data in the
database. Dynamic data masking is implemented in the presentation layer, which means
it is very easy to implement in an existing application with minimal or no changes to
the application code. One interesting use case of dynamic data masking is to randomize
the data in sensitive columns, and then export the randomized data to non-production
environments (the feature should be considered complementary to other security
features, such as Always Encrypted, row-level security, and auditing. Also, note that
administrators always have access to the unmasked data). However, it can be a very
good feature to limit the amount of data users can see in an application. For example,
call center representatives may need to identify customers by the last four digits of an
account number.

Dynamic data masking is implemented at the presentation layer, which means it is
very easy to implement in an existing application with minimal or no changes to the
application code. One interesting use case of dynamic data masking is to randomize
the data in sensitive columns, and then export the randomized data to non-production
environments.

Azure Disk Encryption

In addition to these security features, VMs come with their own security. In the case
of TDE, customers get multiple layers of encryption: Azure Disk Encryption provides
encryption at rest for the operating system and data disks associated with the VM,
and SQL Server Database also encrypts the data and log files, as well as the backups
inside of the operating system. Azure Disk Encryption uses BitLocker on Windows and
DM-Crypt on Linux VMs.

You can learn more about Azure Disk Encryption here23.

https://bit.ly/3gnZp7B
https://bit.ly/2AXajkx

Summary | 89

Auditing

SQL Server provides two types of auditing—server and database auditing. Server audits
capture instance-level events, such as backups and restores, database creation and
removal, logins, and numerous other options. You can see the full list of server audit
events here24. Database-level auditing allows you to track query execution by users and
can be configured on specific objects in the schema.

Data Discovery and Classification

One of the recent additions to SQL Server is the Data Discovery and Classification
feature. This was first introduced into SSMS using extended properties on database
objects. Starting with SQL Server 2019, this functionality is built into the database
engine. SQL Server will identify columns (based on names and pattern matching) that
could potentially contain sensitive data, which provides an easy way to review and
appropriately classify your data. You can then label the columns using tags, which
provides visibility in reporting for both compliance and audit purposes. SQL Server 2019
stores this data in a catalog view called sys.sensitvity_classifcations.

Summary
One of the benefits of building an SQL Server VM on Azure is that you can quickly get
started learning about the features of SQL Server while configuring a limited amount of
infrastructure. Azure makes it possible to simulate complex network architecture with
a few lines of code, which allows you to protect your data. SQL Server and Azure also
offer a wide variety of performance features that allow you to understand the workloads
on your system and troubleshoot problematic queries and workloads. In addition, SQL
Server provides best-in-class security features to meet the most stringent encryption
needs. In fact, newer security offerings such as Advanced Data Security are only
available for SQL Server instances on Azure VMs and not on-premises as yet—an
advantage over traditional SQL Server on-premises installation. In the next chapter, you
will learn more details about running SQL Server on Linux VMs in Azure.

https://bit.ly/2TCbFYo

90 | Hero capabilities of SQL Server on Azure Virtual Machines

Chapter links
1. https://bit.ly/2X0VExf

2. https://bit.ly/2WXwu2G

3. https://bit.ly/36rHusa

4. https://bit.ly/3c2Z2vX

5. https://bit.ly/3cZDIss

6. https://bit.ly/2LYy8dW

7. https://bit.ly/2WZoLkt

8. https://bit.ly/2XsY2Mj

9. https://bit.ly/3bZthDZ

10. https://bit.ly/3grhUID

11. https://bit.ly/3gnwUXA

12. https://bit.ly/36tJ9gR

13. https://bit.ly/3efwJf7

14. https://bit.ly/3c30D4V

15. https://bit.ly/3gkJiIc

16. https://bit.ly/3griKVN

17. https://bit.ly/3ddGxGJ

18. https://bit.ly/2X2HdsO

19. https://bit.ly/2B2Urxb

20. https://bit.ly/3c0L8ub

21. https://bit.ly/2XnXMhE

22. https://bit.ly/3gnZp7B

23. https://bit.ly/2AXajkx

24. https://bit.ly/2TCbFYo

https://bit.ly/2X0VExf
https://bit.ly/2WXwu2G
https://bit.ly/36rHusa
https://bit.ly/3c2Z2vX
https://bit.ly/3cZDIss
https://bit.ly/2LYy8dW
https://bit.ly/2WZoLkt
https://bit.ly/2XsY2Mj
https://bit.ly/3bZthDZ
https://bit.ly/3grhUID
https://bit.ly/3gnwUXA
https://bit.ly/36tJ9gR
https://bit.ly/3efwJf7
https://bit.ly/3c30D4V
https://bit.ly/3gkJiIc
https://bit.ly/3griKVN
https://bit.ly/3ddGxGJ
https://bit.ly/2X2HdsO
https://bit.ly/2B2Urxb
https://bit.ly/3c0L8ub
https://bit.ly/2XnXMhE
https://bit.ly/3gnZp7B
https://bit.ly/2AXajkx
https://bit.ly/2TCbFYo

In Chapter 3, Hero capabilities of SQL Server on Azure VMs, we learned about some of
the capabilities and features of running SQL Server on Azure Virtual Machines. In this
chapter, let's shift the conversation toward leveraging SQL Server on Linux to build
your next application in Azure. We will look at the development ecosystem around SQL
Server on Linux and how SQL Server can help add value to your business applications.
We'll introduce the languages, frameworks, and tools available for you to build and
manage your data estate in Azure. Once we have a firm understanding of how we can
develop applications and the tools available to work with our Azure-based resources,
we will focus on the platforms available for running SQL Server in Azure and helping
you decide what is best for your applications. We will also look at the Azure services
available to help you build scalable and maintainable SQL Server-based applications in
the cloud.

SQL Server on
Linux in Azure

Virtual Machines

4
By Anthony Nocentino

94 | SQL Server on Linux in Azure Virtual Machines

Let's begin by taking a look at open-source languages, frameworks, and tools available
to work with SQL Server on Linux.

SQL Server on the Linux development ecosystem
Modern SQL Server provide an open-source developer with the ability to opt for the
languages and tooling of their choice in order to successfully build their application. In
this section, let's take a look at the language choices you have when developing code
and the tools available when working with SQL Server.

Open-source development frameworks and tooling for SQL Server on Linux in

Azure Virtual Machines

For years, developers had to choose between open-source development frameworks
and those frameworks available for Microsoft technologies. Well, over the course of
the last few years, that binary decision has changed dramatically. Microsoft has made
a conscious effort to enable and support many different developer frameworks and
technologies, embracing open-source technologies within the Microsoft platform.
Now available to you are connection modules (drivers) for the programming languages
of your choice, such as Ruby, PHP, R, Python, and Java. For access to these connection
modules and more information on how to use them, check out this documentation1.
Let's take a quick tour of the languages, the extensibility framework, and language
extensions available to help you develop applications using SQL Server. The tools and
techniques mentioned in this section support both SQL Server on Linux and also SQL
Server on Windows. Therefore, code and tools developed can be targeted toward either
platform.

The following client libraries are available for interacting with Microsoft SQL Server:

• Java

• Node.js

• PHP

• Python

• R

• Ruby

• C#

• C++

https://bit.ly/2TG5aDZ

SQL Server on the Linux development ecosystem | 95

If you're just getting started in the Microsoft space and want to see what it takes to
build an application with your preferred development language on your preferred
platform using SQL Server as your data store, check out this link2 for more information.
Here, you'll be presented with the instructions to build an application right away. We
highly recommend starting here to see what's available to you now.

Knowing the collection of languages and client libraries available to developers, now
let's look at how SQL Server technologies can be leveraged to increase business values
and functionality in applications.

The extensibility framework and language extensions

As a developer, you are used to the paradigm of writing code that retrieves data from
a relational database and then processes that data inside your application. What if we
told you that you could write application code and store it, execute it, and process data
inside SQL Server and return the results back to your client application? With SQL
Server's extensibility framework3, and language extensions4, you can work with complex
data analysis and machine learning scenarios in your application architecture. This
paradigm shift in development techniques provides two benefits—you can use tools of
your choice for your projects and also boost performance since the computing and data
processing is occurring inside SQL Server. Let's look at both more closely.

First, under the SQL Server machine learning services5 umbrella in SQL Server, you can
leverage the tools, packages, and models you're used to using as a developer or data
scientist in both R6 and Python7.

With the language extensions feature of SQL Server, you'll find that you have the ability
to run Java code inside the database engine itself. With language extensions, your
code is stored and executed inside SQL Server, providing benefits such as security and
performance. In terms of security, you can place access controls around the execution
of your application code. Furthermore, since the execution of your code is inside the
database engine, your data does not have to traverse potentially insecure networks.
Avoiding this network transport also provides a performance benefit since all of the
processing and data access takes place locally inside the database engine.

Language extensions are a subset of the extensibility framework in SQL Server.
Language extensions provide developers with the ability to run external code inside
SQL Server. In SQL Server 2019, Java is available as a language extension, enabling you
to write classes that can execute inside SQL Server and directly access set-based data.
This provides performance and security benefits. For more information on how to use
Java programs inside SQL Server, check out this Microsoft documentation8.

https://bit.ly/3ca0IUF
https://bit.ly/3enigOz
https://bit.ly/2X3gCMb
https://bit.ly/2XyWoJ0
https://bit.ly/2ZBIdWl
https://bit.ly/3glUZhC
https://bit.ly/3c3vWfY

96 | SQL Server on Linux in Azure Virtual Machines

In addition to the languages available as part of SQL Server's extensibility framework,
developers can use familiar object-relational mapping frameworks to enable rapid
application developments.

Object-relational mapping (ORM) frameworks

The final stop on our tour of languages and frameworks supported by SQL Server is
object-relational mapping (ORM) frameworks. ORMs enable developers to write code as
objects and allow the database connectivity driver to convert that runtime object into
structured data stored in the relational database, a valuable tool for rapid application
development. SQL Server is supported as a back-end data store to several popular ORM
frameworks. Some of these are listed here:

• Entity Framework and Entity Framework Core9

• Hibernate10

• Laravel Eloquent11

• Sequelize12

• Django13

• Ruby on Rails14

So now that we have an idea of what languages and frameworks are available to us
for developing on SQL Server, let's move on and learn about the tools available for
developing our applications and managing our platforms in Azure.

Cross-platform tooling

Microsoft offers a traditional suite of tools15 to manage both SQL Server and Azure
and recently, many of these tools have been made available on multiple platforms.
Previously, developers using Linux or Mac workstations would need to run a Windows
VM to develop applications in Visual Studio and to manage SQL Servers with SQL Server
Management Studio, but this is no longer necessary. Available now are cross-platform
tools such as Visual Studio Code to develop applications and Azure Data Studio
to manage a SQL Server estate and develop T-SQL directly without the need for a
Windows-based VM. Developers and administrators can use these cross-platform tools
to develop and manage applications and systems across their entire SQL Server estate,
including servers on both Windows and Linux platforms.

https://bit.ly/2X3kTz4
https://bit.ly/2ztxBhu
https://bit.ly/2ZIvkKl
https://bit.ly/3gmYHHI
https://bit.ly/3c4ExPA
https://bit.ly/3c4Ezaa
https://bit.ly/3ekRhTO

SQL Server on the Linux development ecosystem | 97

Let's have a look at the different sets of tools available for application and database
development:

Graphical tools

• Visual Studio Code: A graphical IDE that provides syntax highlighting, debugging,
and Git integration. Visual Studio Code16 extensions provide a wide library
of additional languages, debuggers, and tools to enable rapid and efficient
development.

• Azure Data Studio: Based on a VS Code core, Azure Data Studio17 provides similar
features and functionality, but with a focus on data and managing SQL Server
estates. It has additional user experiences geared toward working with data both
on-premises and in the cloud.

An interesting note regarding both Visual Studio Code and Azure Data Studio is the fact
that both of these tools are being developed out in the open on GitHub and accept pull
requests from the community! If there is a feature you would like to be added or a bug
you know how to fix, then go ahead and check out Microsoft's azuredatastudio18 and
vscode19 repositories respectively to start participating in projects.

On a personal note, I have been using the Mac and Linux platforms for nearly 20 years.
I have had to keep a VM around to manage systems and develop applications running
on the Microsoft platform. Tools such as Visual Studio Code and platform choices such
as running SQL Server on Linux have directly impacted how I consume these products
and develop solutions. The main idea here is choice—I am able to choose what platform
I want to use when working with these technologies.

In addition to the aforementioned graphical tools, many cross-platform, command-
line tools are now available. Each of these tools is used for various development and
management scenarios:

https://bit.ly/2X2MIYs
https://bit.ly/3enW1HZ
https://bit.ly/2LZshVP
https://bit.ly/3gqB4xZ

98 | SQL Server on Linux in Azure Virtual Machines

Command-line tools

• PowerShell Core: A command-line scripting language used for automation tasks.
PowerShell, familiar to Windows administrators for many years, is now a cross-
platform tool that can be used on nearly any base operating system to manage
systems and applications and also build integrations and pipelines. Check out this
Microsoft documentation20 for installing PowerShell.

• mssql-cli: Provides an interactive command-line interface experience for querying
with SQL Server. It's a new tool21 available for developers and DBAs to interact with
SQL Server interactively at the command line with autocompletion. This enables
you to quickly browse and work with data available from SQL Server.

• sqlcmd: A command-line utility for running T-SQL on SQL Server. This tool is
familiar to many DBAs and developers for interacting with SQL Server at the
command line. This tool22 is now available on Windows, Linux, and Mac, enabling
cross-platform management of your SQL Server.

• Cloud Shell: Provides access to all of your Azure command-line tools available in
a browser window. The value that Cloud Shell adds is that the tools in Cloud Shell
will be updated and managed by Microsoft. So, as new versions of the tooling
become available, you do not have to maintain Cloud Shell—it is automatically
updated for you. Tools such as Bash, PowerShell, SQL Server command-line tools,
and the Azure CLI are all available in Cloud Shell23.

Now, transitioning from development into production, let's move on from the languages
and tools available to build applications and discuss the platforms and tools available
that are used to deploy SQL Server and SQL Server-based applications in Azure.

Platform deployment and management for SQL Server in Azure
DevOps and infrastructure as code have been trending in IT development and
operations processes for the last several years, enabling developers and operations
teams to write code to define the desired state of the infrastructure needed to support
applications. Infrastructure as code-based solutions enable developers and operations
teams to build repeatable and tested solutions. To enable these processes and
scenarios, Microsoft provides the Azure CLI24 and Azure PowerShell25 (the PowerShell
Az module). These tools are the foundation for any programmatic interaction with
Azure and are available on Windows, Linux, Mac, and Docker.

https://bit.ly/2ZBLsgt
https://bit.ly/3eq6mU9
https://bit.ly/2X1j85k
https://bit.ly/3en9Y9s
https://bit.ly/2ZEYEBc
https://bit.ly/36vRgcM

Platform deployment and management for SQL Server in Azure | 99

You can build custom solutions with both the Azure CLI and Azure PowerShell at
the command line using imperative techniques, where you execute the commands
necessary to build the Azure infrastructure and resources requested. However, to
really enable infrastructure as code, you will need to use a declarative technique to
write documents that describe the Azure infrastructure and resources that need to be
built. The ARM templates26 enable you to build configuration documents that describe
your Azure infrastructure and its resources and build repeatable, declarative processes
for deployment. This code can be managed in source control and used as part of a
deployment pipeline to ensure that your Azure infrastructure and its resources are in
the desired state prior to rolling out applications.

In addition to the command-line tools available to manage your Azure infrastructure
and resources, the Azure portal has a graphical, interactive way to create and manage
resources in Azure. The Azure portal can be used to create individual resources with
predefined workflows, but can also be used to deploy Azure ARM templates, which can
be uploaded to the Azure portal interactively.

We encourage you to create a Linux SQL Server VM in the Azure portal. For step-by-
step instructions on how to do so, check out this Microsoft documentation27. One of
the main benefits of creating a VM in the Azure portal is finding what's new. The Azure
portal will surface new configurations and options graphically so that you can easily see
what's changed when deploying a resource, in this case, our VM.

When using the Azure portal to create resources, one of the final options available to
you when completing the wizard to create a resource is to Download a template for
automation. While you can still create the resource in the portal by clicking on the
Create option, the download option will give you the ARM template that you can use
to source your automation tasks. This process of exporting your ARM template and
using it as a source for your automation tasks enables you to quickly generate your
infrastructure as code resource configuration document (ARM template) and use that
document as part of your deployment pipelines when combined with the Azure CLI or
Azure PowerShell.

The tools to help deploy and manage resources available in Azure are core to building
fast and repeatable deployments. Now, let's drill down further and talk about the
platform options available for running SQL Server on Linux in Azure IaaS VMs.

https://bit.ly/2ZDQJnB
https://bit.ly/3ew0jgT

100 | SQL Server on Linux in Azure Virtual Machines

Supported base operating systems for running SQL Server on
Linux in Azure IaaS VMs
When deploying SQL Server on Linux in Azure, you have several platform choices. In
this section, I will introduce how to deploy SQL Server on Linux in Azure using an Azure
Marketplace image with SQL Server on Linux pre-installed, using an Azure Marketplace
image and installing SQL Server on Linux manually, and also container-based
deployments. I will wrap up this section with advice on which platform you should
choose for your applications.

Using an Azure Marketplace image with SQL Server on Linux pre-installed

When creating Azure VMs to run SQL Server on Linux, the underlying platform
becomes a critical choice in terms of deployment and management.

When it comes to deploying SQL Server on Linux in Azure, you can start off by using
pre-built Azure Marketplace images. This means that you can select a base operating
system with SQL Server on Linux pre-installed. There are Marketplace images with
SQL Server pre-installed available for the latest versions of currently supported Linux
distributions. You can also choose between versions of SQL Server, including both 2017
and 2019, and editions such as Developer, Standard, or Enterprise. In Figure 4.1, you can
see the Azure Marketplace images available for running SQL 2019 on Ubuntu or Red Hat
Enterprise Linux:

Figure 4.1: Selecting an Azure Marketplace image for SQL Server on Linux 2019

You can find more information on working with a SQL IaaS VM in Azure here28.

https://bit.ly/2Ab3fAk

Supported base operating systems for running SQL Server on Linux in Azure IaaS VMs | 101

Using a Linux Azure Marketplace image and installing SQL Server on

Linux manually

Now, there are scenarios where you'll need to deviate away from these Azure
Marketplace images with SQL Server on Linux pre-installed. Perhaps you need to run a
supported Linux distribution or version that is not currently available as a Marketplace
image, for example, Red Hat Enterprise Linux 8. If that is the case, you can deploy
the base operating system image from the Azure Marketplace and use that operating
system package manager to install SQL Server on Linux:

• For more information on installing SQL Server on Linux via a package manager,
check out this Microsoft documentation29.

• For more information on currently supported operating systems and platforms
for running SQL Server on Linux, check out the Red Hat Enterprise Linux30, SUSE
Linux Enterprise Server31, Ubuntu32, and Docker33 quickstart and installation
guides.

• For information on configuring SQL Server on Linux for high availability
using availability groups on IaaS VM deployments in Azure, refer to this
documentation34.

Container-based deployments for SQL Server on Linux in Azure

When SQL Server became available on Linux, it opened the door for SQL Server to run
in containers. A container is a form of operating system virtualization that allows you to
run multiple applications on the same base operating system without the applications
and their processes knowing about each other. This isolation is central to the success
of containers as it means that scenarios in which applications may conflict with one
another can now be deployed on the same system. A container is a running container
image. A container image contains the binaries, libraries, and filesystem components
to run your application. Let's take a second to explore some of the benefits of running
applications in containers:

• Speed: When compared with VMs, containers are significantly smaller, meaning
they are more agile in moving around inside a datacenter. A VM running SQL
Server consumes about 60 GB+ of storage before any databases are created—just
the base operating system plus the SQL Server installation. A container image
for SQL Server is about 1.5 GB. Copying 1.5 GB of data is straightforward for any
modern datacenter or even a home internet connection.

• Upgrades: We can upgrade SQL Server by creating a new container running the
newer version of SQL Server. Moreover, within major versions, you have the ability
to roll back if needed.

https://bit.ly/2ZDGv70
https://bit.ly/2A40ReN
https://bit.ly/2XtauvD
https://bit.ly/2XtauvD
https://bit.ly/2LYfLG3
https://bit.ly/2zvhy2P
https://bit.ly/2X1kqgG

102 | SQL Server on Linux in Azure Virtual Machines

• Fast and consistent deployments: Running SQL Server in containers enables us to
write code for our deployments and common deployment mechanisms to roll out
SQL Server in a fast and consistent way enabling DevOps practices.

• DevOps: Running SQL Server in containers, you can leverage SQL Server as an
element of your Continuous Integration and Continuous Deployment pipelines.

• Testing: Containers give SQL Server users the ability to quickly create a SQL
Server instance and consume its services for testing scenarios, perhaps with a
view to validating version upgrades or patches.

Running multiple SQL Server containers on an IaaS VM in Azure

VMs are the dominant compute layer for running application containers in the cloud.
By deploying a VM with a supported base operating system, such as Ubuntu or Red
Hat Linux, you can quickly deploy multiple containers running SQL Server onto the
base operating system, thereby increasing the density of your SQL Server deployment
footprint on that single VM. This deployment paradigm is similar to using named
instances35 in Windows-based deployments of SQL Server, where you can have multiple,
unique SQL Server instances running on a single base operating system. In container-
based deployments, each container started on the base operating system has a unique
instance of SQL Server and is available for the application to connect to over the
network available on its own unique TCP port. The isolation provided by containers
enables you to confidently run multiple versions and editions of SQL Server on the
same base operating system when deploying SQL Server in multi-container scenarios.

Container images available for SQL Server on Linux

SQL Server on Linux is available in several container image permutations of SQL Server
versions and container operating systems. You will find SQL Server container images for
SQL Server 2017 and 2019 that are based on Red Hat Enterprise Linux and Ubuntu. Since
there are many combinations available, it's important to be able to quickly find which
container images are available, along with their platform and version. This plethora
of numerous, readily available images enables developers to be able to quickly access,
deploy, and test applications against the many versions and iterations of SQL Server
available.

https://bit.ly/2TEPKzO
https://bit.ly/2TEPKzO

Supported base operating systems for running SQL Server on Linux in Azure IaaS VMs | 103

The following code shows how to generate a list of container images available for Red
Hat Enterprise Linux (output abbreviated):

curl -sL https://mcr.microsoft.com/v2/mssql/rhel/server/tags/list

"2019-CU1-rhel-7.6"

"2019-CU1-rhel-8"

"2019-GA-rhel-7.0"

"2019-GA-rhel-7.6"

"2019-GDR1-rhel-7.0"

"2019-GDR1-rhel-7.6

"2019-latest"

"latest"

"vNext-CTP2.0"

The following code shows how to generate a list of available container images available
for Ubuntu Linux (output abbreviated):

curl -sL https://mcr.microsoft.com/v2/mssql/server/tags/list

"2019-CTP3.2-ubuntu"

"2019-CU1-ubuntu-16.04"

"2019-GA-ubuntu-16.04"

"2019-GDR1-ubuntu-16.04"

"2019-RC1"

"2019-RC1-ubuntu"

"2019-latest"

"latest"

"latest-ubuntu"

Having selected a container platform, let's move on to how to run SQL Server in a
container.

104 | SQL Server on Linux in Azure Virtual Machines

Starting a container running SQL Server on Linux

The simplicity and speed of starting containers is quite remarkable. The following code
will start a container running SQL Server 2019 CU1 on an Ubuntu Linux-based container
image. Run this code and seconds later you will have a running instance of SQL Server
to connect applications to. A word of caution—this container definition is NOT using
persistent storage and, if deleted, any data inside this container will be deleted:

docker run \

 --env 'ACCEPT_EULA=Y' \

 --env 'MSSQL_SA_PASSWORD=S0methingS@Str0ng!' \

 --name 'sql1' \

 --publish 1433:1433 \

 --detach
 mcr.microsoft.com/mssql/server:2019-CU1-ubuntu-16.04

94936a1b517650426df8fdc896fa4ceac3fb553326f52575a384fe030e8f04de

Here are a few critical scenarios deploying SQL Server on containers, including how to
persist data when using containers:

• Running multiple SQL Server containers

• Persisting your data

• Upgrading SQL Server in containers

• Troubleshooting

• Building a custom SQL Server on Linux containers

To read about these in detail, refer to this Microsoft documentation36.

https://bit.ly/2LY5z0j

So many choices: which platform should you choose? | 105

Deploying SQL Server in containers in Azure

In addition to deploying SQL Server in containers on IaaS VMs, as introduced in the
previous section, Container-based deployments for SQL Server on Linux in Azure, you
can use Azure Container Instances and Azure Kubernetes Service to deploy SQL Server
in Azure:

• Azure Container Instances37: For serverless implementations of containers in
Azure, commonly used to stand up containers to support short-term workloads.

• Azure Kubernetes Service38: For production-grade, container-based workloads.
AKS is a platform commonly used for long-running, container-based workloads in
Azure.

If you look at the most recent product releases from the SQL Server product group,
you will find solutions such as Big Data Clusters and Azure Arc data services. These
solutions are built entirely on containers running in container orchestration platforms,
both in on-premises and cloud scenarios. The future of SQL Server is containers. For
me, a few years ago, I saw SQL Server on Kubernetes for the first time. I saw firsthand
the benefits of administration, system management, and also the development speed
provided by running SQL Server in containers on Kubernetes. At that time, I chose to
invest my own learnings in running SQL Server on containers and also Kubernetes. I
strongly feel that this is the future when it comes to deploying SQL Server.

In this chapter so far, development languages and frameworks, tooling, platform
management, and also platform options, such as IaaS VMs and containers, have all been
introduced. This can get to be a bit overwhelming, so let's take some time to discuss
how to choose a platform for deploying SQL Server in Azure.

So many choices: which platform should you choose?
So far in this chapter, we have outlined several deployment scenarios for SQL Server on
Linux in Azure. In this section, you will understand your platform choices and some of
the decision points to help you decide which is best for your scenario. As a developer,
it's important that you consider the platform your application will run on.

Which base operating system?

When using IaaS VMs, you have the choice of selecting the base operating system
you want to deploy. While deciding the base system, there are two key elements: the
technical requirements and the skills of the organization. The technical requirements of
the application are something that can surface pretty easily during the analysis phase
of building a system architecture. In this section, I'm going to focus on operations and
costs—two things that are often forgotten when developing system architectures.

https://bit.ly/2X3mdSH
https://bit.ly/2XxFWsq

106 | SQL Server on Linux in Azure Virtual Machines

Operations and maintenance

When working with VMs, key operations and maintenance are going to still be under
your control. So, things such as software installation, patching, on-going system
maintenance, and performance-tuning are still your responsibility. This is fine if that's
the requirement for your deployments and your organization. These elements are
going to be key to choosing the base operating system. If your organization is one that
is familiar with administering Red Hat-based solutions, you can leverage your existing
skills and tooling to manage your Azure IaaS VM-based platform. If your organization is
one that is skilled with Ubuntu and the universe around this distribution, then you have
this as a choice as well. The key concept is that the platform is your choice to make.

You can learn more about the most recent performance best practices for Linux from
this Microsoft documentation39.

Operating system costs and support options

In Azure, the Marketplace images that are available with SQL Server on Linux
pre-installed are based on Red Hat Enterprise Linux, SUSE Linux Enterprise Server,
and Ubuntu. Red Hat and SUSE are licensed software products that have "pay as you
go" and "bring your own software" offerings in Azure. Ubuntu's offering in Azure
comes at no additional licensing costs for the operating system, but this free edition
does not include support—support is available for purchase from Ubuntu's publisher,
Canonical. Production support or enterprise agreements can be a critical factor in your
deployment scenario and can impact your choice of base operating system based on the
needs of your organization.

How should you choose between containers and VMs?

You may have heard that containers are the new VMs and we described earlier in this
chapter the benefits of using containers and also how you can combine IaaS VMs and
containers in Azure. Furthermore, modern application and infrastructure architectures
are trending toward container-based deployments in container orchestrators such
as Kubernetes and OpenShift. These deployment scenarios enable private cloud and
serverless architectures.

The focus of this chapter is deploying SQL Server on Linux in Azure IaaS VMs, and a
primary motivation for running SQL Server in containers on IaaS VMs is to support
multi-instance scenarios. SQL Server on Linux does not have the concept of a named
instance as in the case of SQL Server on Windows. So, to run multiple instances of SQL
Server on a single base operating system or a single VM, you need to use containers.

https://bit.ly/2Xtc7tf

So many choices: which platform should you choose? | 107

From a deployment standpoint, you do have to take into consideration the fact that you
are sharing the resources of the underlying VM. So, in terms of CPU, memory, and disk,
you will need to ensure that your container-based SQL Server workloads have sufficient
resources and that these are shared and balanced accordingly among the containers
running your SQL Server workload.

Finally, when running SQL Server in containers, for ideal performance, you should run
the same operating system inside the container as you do on the base operating system.
This will ensure that there are no virtualization technologies in play when running your
SQL Server workloads, thereby yielding maximum performance.

Why should you do this in Azure?

The majority of this chapter has been about running SQL Server in Azure and in VMs
and containers. Let's have a look at some of the common Azure services that can
be combined with Azure-based SQL Server solutions and building and deploying
enterprise applications in Azure:

• Azure Load Balancer: Used to distribute loads into multiple application servers for
scale-out performance and redundancy.

• Azure Traffic Manager: DNS-based load balancing between Azure regions. Used
for scaling workloads beyond a single region and also for high availability and
disaster recovery between regions.

• Azure Site Recovery: Provides business continuity and disaster recovery
of applications at the VM level between Azure regions with coordinated,
dependency-aware failover.

• Azure Recovery Services Vaults: Provides VM-level snapshot-based backups and
replication of those backup vaults between Azure regions.

• Azure Storage Accounts: Using Azure Files, which is a feature of Azure Storage
accounts, you can expose a CIFS mount in a Linux VM. This can be used as a SQL
Server backup target. SQL Server backups are stored in Azure Files and can be
protected with snapshot backups and replication between Azure regions. Azure
Files is one of my "go to" solutions for customers who need to manage SQL Server
backups in the cloud, leveraging the benefits of snapshots and inter-region
replication to provide a high level of data protection.

• Azure Security Center: Azure Security Center is a unified infrastructure security
management system that strengthens the security posture of your datacenters
and provides advanced threat protection across your hybrid workloads in the
cloud. In an IaaS environment, you need access to the tools that Azure Security
Center provides to harden your network, secure your services, and make sure that
you're on top of your security posture.

108 | SQL Server on Linux in Azure Virtual Machines

Summary
In this chapter, we introduced the open-source development ecosystem around SQL
Server on Linux and how SQL Server can help add business value to applications. We
introduced the tools available for you to build and manage your data estate in Azure,
including the Azure CLI and Azure Data Studio. We then looked at the platforms
available to run SQL Server on Linux in Azure and some of the decision points to
focus on when selecting your application's platform. We then wrapped things up with
a discussion of some of the most common Azure services that can be used to build a
data platform in Azure. With that, let's move on to the next chapter, which will focus on
the performance of SQL Server, best practices, and how you can optimize workloads
running in SQL Server on Linux in Azure.

Chapter links | 109

Chapter links
1. https://bit.ly/2TG5aDZ

2. https://bit.ly/3ca0IUF

3. https://bit.ly/3enigOz

4. https://bit.ly/2X3gCMb

5. https://bit.ly/2XyWoJ0

6. https://bit.ly/2ZBIdWl

7. https://bit.ly/3glUZhC

8. https://bit.ly/3c3vWfY

9. https://bit.ly/2X3kTz4

10. https://bit.ly/2ztxBhu

11. https://bit.ly/2ZIvkKl

12. https://bit.ly/3gmYHHI

13. https://bit.ly/3c4ExPA

14. https://bit.ly/3c4Ezaa

15. https://bit.ly/3ekRhTO

16. https://bit.ly/2X2MIYs

17. https://bit.ly/3enW1HZ

18. https://bit.ly/2LZshVP

19. https://bit.ly/3gqB4xZ

20. https://bit.ly/2ZBLsgt

21. https://bit.ly/3eq6mU9

22. https://bit.ly/2X1j85k

23. https://bit.ly/3en9Y9s

24. https://bit.ly/2ZEYEBc

25. https://bit.ly/36vRgcM

26. https://bit.ly/2ZDQJnB

27. https://bit.ly/3ew0jgT

https://bit.ly/2TG5aDZ
https://bit.ly/3ca0IUF
https://bit.ly/3enigOz
https://bit.ly/2X3gCMb
https://bit.ly/2XyWoJ0
https://bit.ly/2ZBIdWl
https://bit.ly/3glUZhC
https://bit.ly/3c3vWfY
https://bit.ly/2X3kTz4
https://bit.ly/2ztxBhu
https://bit.ly/2ZIvkKl
https://bit.ly/3gmYHHI
https://bit.ly/3c4ExPA
https://bit.ly/3c4Ezaa
https://bit.ly/3ekRhTO
https://bit.ly/2X2MIYs
https://bit.ly/3enW1HZ
https://bit.ly/2LZshVP
https://bit.ly/3gqB4xZ
https://bit.ly/2ZBLsgt
https://bit.ly/3eq6mU9
https://bit.ly/2X1j85k
https://bit.ly/3en9Y9s
https://bit.ly/2ZEYEBc
https://bit.ly/36vRgcM
https://bit.ly/2ZDQJnB
https://bit.ly/3ew0jgT

110 | SQL Server on Linux in Azure Virtual Machines

28. https://bit.ly/2Ab3fAk

29. https://bit.ly/2ZDGv70

30. https://bit.ly/2A40ReN

31. https://bit.ly/2XtauvD

32. https://bit.ly/2LYfLG3

33. https://bit.ly/2zvhy2P

34. https://bit.ly/2X1kqgG

35. https://bit.ly/2TEPKzO

36. https://bit.ly/2LY5z0j

37. https://bit.ly/2X3mdSH

38. https://bit.ly/2XxFWsq

39. https://bit.ly/2Xtc7tf

https://bit.ly/2Ab3fAk
https://bit.ly/2ZDGv70
https://bit.ly/2A40ReN
https://bit.ly/2XtauvD
https://bit.ly/2LYfLG3
https://bit.ly/2zvhy2P
https://bit.ly/2X1kqgG
https://bit.ly/2TEPKzO
https://bit.ly/2LY5z0j
https://bit.ly/2X3mdSH
https://bit.ly/2XxFWsq
https://bit.ly/2Xtc7tf

The previous chapters have given you an understanding of SQL Server, the overall
benefits of the various capabilities of SQL Server on Azure VMs, and how to get started
with SQL Server on Azure VMs.

In this chapter, we will discuss SQL Server performance best practices and how you
can achieve the best performance for your SQL Server workload. This chapter will be
divided into three main parts:

• Performance best practices

• How to optimize SQL Server on Azure VMs

• Azure BlobCache

Let's begin by taking a look at the best practices to follow in order to get the most from
your SQL Server.

Performance

5
By Tim Radney

114 | Performance

Performance best practices
Performance tuning can be a broad and complex topic; however, migrating to Azure
VMs can help simplify the process. There are so many factors that can impact
performance. If you have already deployed an Azure VM, the Azure portal lets you use
Azure Monitor for VMs. It provides insights into the health and performance of your
Windows or Linux VMs by monitoring their processes and dependencies on other
resources. Not only can it monitor other Azure VMs; it can monitor VMs on other cloud
providers and on-premises to give you a holistic view. You get pre-defined performance
charts that show the trending and the dependency map, all built into the Azure portal.
In addition to Azure Monitor for VMs, all VMs have basic monitoring enabled in the
Azure portal. This basic monitoring shows the average CPU, the total network, the
total disk bytes, and the average disk operations per second. Data can be shown for the
past 1, 6, or 12 hours; the past 1, 7, or 30 days; and can be found in the Overview tab of
the VM.

When planning a new deployment, upgrade, or migration for the SQL Server workload,
one of the first considerations is the size of the server that will handle the workload.
Regardless of the server environment, whether it's physical or virtual, on-premises
or on the cloud, the amount of CPU, memory, and storage will always be factors
that influence the deployment. Azure VMs help here by having specific VM types for
different workload needs:

• General purpose: Balanced CPU-to-memory ratio. Good for small- to mid-size
databases.

• Compute optimized: High CPU-to-memory ratio. Good for ETL servers.

• Memory optimized: High memory-to-CPU ratio. Great for relational database
servers, medium to large caches, and in-memory analytics.

• Memory optimized constrained vCPUs: The vCPU count can be constrained
to one half or one quarter of the original VM size. This reduces the SQL Server
license cost and allows you to have a low CPU-to-memory ratio.

• Storage optimized: High disk throughput and I/O. Ideal for big data, SQL, NoSQL,
data warehousing, and large transactional databases.

• High performance compute: Designed for leadership-class performance, MPI
scalability, and cost efficiency for a variety of real-world HPC workloads.

Whatever your workload, there is a VM type for you. There are other considerations
for performance as well, such as the configuration of SQL Server and the overall
maintenance of the system.

Performance best practices | 115

In the following sections, we will begin by discussing these factors, starting with
VM storage.

Virtual Machine Storage

Azure VMs are an excellent choice for running SQL Server workloads. Chapter 2, Getting
Started with SQL Server in Azure Virtual Machines, introduced you to getting started
with Azure VMs and Chapter 4, SQL Server on Linux in Azure Virtual Machines, covered
the various Linux and Windows distributions and their advantages. The disk types
were explained, and you should understand that production SQL Server workloads
should be running on premium SSDs or ultra disks. Most SQL Server workloads are I/O
intensive, meaning production workloads require faster storage. Premium SSDs are
designed for production workloads and workloads that are sensitive to performance.
For very intense I/O workloads, ultra disks are a better choice as they deliver higher
throughput, higher IOPS, and lower latency. Consider ultra disks when you have a very
transaction-heavy workload. When considering CPU, memory, and storage, storage is
typically the slowest component, which means that faster storage is better.

When it comes to selecting a VM, the size and the type matter for numerous reasons.
The number of disks a VM can have is tied to the size of the VM in addition to overall
IOPS and throughput. Organizations generally struggle with selecting the right size
of the VM to handle their I/O needs. It is entirely possible to configure a VM with a
storage solution that can provide a high number of IOPS and throughput that the VM
throttles and hits the ceiling of what the VM supports. In this type of situation, the VM
will have to be scaled up to a larger size that supports a higher number of IOPS and
throughput to have better storage performance. If you are configuring the VM through
the Azure portal and select a storage configuration that exceeds the throughput limit of
the VM, a message is displayed to warn you about this limitation.

When it comes to sizing a VM for an existing workload that is being migrated to Azure,
it is common to try to match the existing memory, CPU, and storage capacity. What is
needed in order to properly size an Azure VM is a baseline. A baseline is simply a point
of reference that is measured. When working with SQL Server, baselines are important
so that you can capture when there is a change in behavior or performance. Common
things to capture are CPU and memory utilization, disk latencies, and batch requests
per second, among other things. Having baselines is important; you need to know what
normal behavior looks like so that you can tell when things are different. A baseline
for existing I/O and throughput usage is critical in order to know what the maximum
throughput is that you'll need the Azure VM to handle.

116 | Performance

You can use Performance Monitor1 to capture physical disk metrics; however, the
sys.dm_os_virtual_file_stats dynamic management view (DMV) provides the key
information needed to calculate overall throughput by returning I/O statistics for data
and log files. The num_of_bytes_read and num_of_bytes_written columns return the
number of bytes read and written to each file. If you capture the results of this DMV
over a short period of time, you can calculate the MB/s for reads and writes to know
whether the size of the VM with the storage you provided can support this workload.
This is a crucial step that many organizations miss when migrating SQL Server
workloads to the cloud and then experience slower overall performance.

As an alternative sizing method, you can use the Azure Migrate: Server Assessment tool.
Azure Migrate collects real-time sample points for a month and analyzes the data to
identify the ideal VM size based on those metrics.

It is common for on-premises VMs with lower logical core counts to have very high
throughput capabilities to the local storage area network (SAN). In a public cloud
scenario, constraints must be in place to prevent one VM from consuming all the
storage throughput on that host. It makes sense that the available throughput and
I/O to the host is allocated based on the size of the VM. The larger the VM, the more
resources it is assigned. This must be a consideration for performance when planning a
migration to Azure.

To handle the I/O requirements, you should only consider Azure premium disk or ultra
disk for your production SQL Server environment.

Memory

If you ask a Database Administrator (DBA) how much memory a SQL Server needs,
a common response is "more" or "all of it". The reason why it is good to allocate SQL
Server a lot of memory is that the buffer pool will store recently read data in memory. If
that data is accessed again while it is in memory, SQL Server doesn't have to go back to
the disk to retrieve it, which is a slow operation. These are called logical reads when it
pulls from memory.

For SQL Server workloads that need high memory-to-CPU ratios, you should choose
the memory-optimized type of VMs. In many cases, you may need even more memory
than offered by the standard memory-optimized type of VM. For those situations, the
memory-optimized constrained vCPU VM offers the best price for performance. It
allows you to select the much larger vCPU and memory VM and only use a quarter or
half of the available vCPU. This gives you higher memory, storage, and I/O bandwidth
without the higher cost of SQL Server licenses.

https://bit.ly/2X3b8Ba
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql?view=sql-server-ver15

Performance best practices | 117

Having more memory also opens up the ability to take advantage of memory-optimized
tables known as In-Memory OLTP. In-Memory OLTP is designed to optimize the
performance of transaction processing, ingesting data, loading data, and various
transient data processes. In-Memory OLTP is just what it sounds like. It allows you to
create memory-optimized tables and store data into memory. It gets its performance
gains by removing lock and latch contention between transactions, making transaction
execution much more efficient. For very volatile or large-volume transaction
processing, In-Memory OLTP can drastically improve performance. Learn more about
In-Memory OLTP here2.

Another SQL Server feature that can be utilized is columnstore indexes. Columnstore
indexes provide a different way of storing data that can provide performance
improvements for certain types of queries. A columnstore is data that is physically
stored in columns and then logically organized into rows and columns. The
columnstore index slices the table into rowgroups and then compresses them. With
the high level of data compression, typically by 10 times, you can drastically reduce the
storage cost and improve I/O bottlenecks in your environment. Columnstore indexes
can be beneficial in both OLTP and data warehouse environments. Columnstore objects
are cached in the columnstore object pool instead of the SQL Server buffer pool. There
is a 32 GB limit for the columnstore object pool in the Standard Edition, whereas there
is no limit for the Enterprise Edition.

If a system starts suffering from memory pressure, organizations can easily scale an
Azure VM up or down to another size that has more or less memory as needed. This
ability to scale up and down as workloads change is one of the biggest benefits of Azure
VMs and can save organizations a ton of money. To have that benefit on-premises,
you have to own the hardware that you may only need a few times per year for scale,
whereas in Azure, you can scale as needed. I've worked with numerous clients over the
years who have a seasonal business. Open enrollment for healthcare, registration for
universities, online retailers for Black Friday, and so on require extra compute during
their busy seasion. They can scale up and just pay for the additional compute during
that season and then scale back down. For example, a customer may have D16s_v3/
D16as_v4 with 16 vCPUs and 64 GiB of RAM. Their busy season is approaching and they
know their workload will increase by 40-50%. They could simply scale to D32s_v3,/
D32as_v4, which would double their vCPUs from 16 to 32, their memory from 64 GiB
to 128 GiB, and also their temporary storage from 128 to 256 GiB. Since they are staying
within the same VM series, all that would be needed is a restart. If the resize is to a
different type of series, or the hardware cluster hosting the VM does not support the
new VM, the VM will be moved to a new host, which can take more time.

https://bit.ly/2X2nwRV

118 | Performance

For existing SQL Server instances that are being migrated to Azure, we strongly
recommend analyzing the current memory utilization before assuming that you need
the same memory post-migration. If data is staying in the buffer pool for excessive
amounts of time, you could consider a VM with less memory. For example, I had a
customer who was on a 4 vCPU on-premises VM that was allocated 128 GB of memory.
I was measuring page life expectancy (how long data pages stay in memory) in days,
not minutes or hours. They were not using In-Memory OLTP and it was a dedicated
machine just for SQL Server. We were able to migrate to a VM with less memory, saving
the customer a lot of money.

At the same time, if you are experiencing memory pressure, tuning and optimizing
should be considered before migrating to decrease the memory pressure. Properly
sizing the Azure VM is necessary for better SQL Server performance, but also to ensure
that you are not overspending on resources that you don't need.

CPU

Selecting the number of processors can have a direct impact on SQL Server
performance if you underestimate the amount of CPU needed. If you overestimate
the number of processors, you won't see a performance improvement; however, it will
affect your SQL Server license cost. Workloads change over time, and at some point
more CPUs may be needed to handle that workload. Microsoft has published a list3 of
the Azure compute units (ACUs) for the different VM families. This gives you a quick
reference to compare CPU compute performance across Azure SKUs.

By running SQL Server on Azure VMs, you can easily scale to a server with more vCores,
which typically also includes more memory and more I/O throughput. Don't forget
about those constrained vCPU options if you have a small vCore requirement but a need
for larger memory. However, if you have a high compute need, compute-optimized VMs
offer a higher core count. For low CPU latency and fast clock speeds, consider the Eav4
VM series, which features the AMD EPYC™ processor.

Properly sizing the Azure VM has a direct correlation to having the foundation for a
SQL server that performs well. The number of CPUs needed, the amount of memory
required, the overall storage capacity, and the storage I/O are all factors that control
the type and size of Azure VM you need. Each factor, by itself, can force you into a
certain size VM or VM type. Gathering these requirements early on is a big factor in
having a SQL server with good performance, and a successful deployment.

https://bit.ly/36yDV3r

Performance best practices | 119

SQL Server configuration

TempDB is a system database that is utilized by many processes for storing work tables,
temporary tables, spills, row versions, and much more. TempDB is a unique database
due to its characteristics. For example, there is only one TempDB database for the
entire SQL Server instance, it's recreated when the SQL Server services are restarted,
and technically, TempDB cannot be backed up. However, TempDB is a mission-critical
database for the SQL Server instance and can become a place of contention for SQL
Server. For that reason, TempDB needs to be properly sized for the instance and
requires more than a single data file. In most gallery images, there is a single data
file and a log file for TempDB. With TempDB being utilized by the entire instance,
contention can develop on the pages related to Page Free Space (PFS), Global Allocation
Map (GAM), and Shared Global Allocation Map (SGAM). These are pages 1, 2, and 3 in
the data file. A new PFS page is created every 64 MB, and a new GAM and SGAM page is
created every 4 GB.

To alleviate the potential for contention on these pages, you need more data files. The
generally accepted rule is one equal size data file per core up to 8-cores. If you have
more than 8-cores, start with eight data files of an equal size. If contention is still an
issue with eight files, create more equally sized data files in increments of four. You
should also set the initial size of the data and log files to be the size that TempDB grows
to after an initial workload. For example, if you have a 4 vCore server and TempDB
grows to 8 GB in size after a normal workload, you would need to create four TempDB
data files with an initial size of 2 GB each and make sure each is set to auto grow by the
same fixed size.

The default auto growth size for TempDB on SQL Server 2017 and SQL Server 2019 is
64 MB. This can be changed to a higher value if needed. Beginning with SQL Server
2016, when TempDB data grows, each TempDB data file grows at the same time. Prior
to SQL Server 2016, this was controlled using trace flag 1117. Also beginning with SQL
Server 2016, when an extent is created, all eight pages are created at the same time.
Prior to SQL Server 2016, this was accomplished using trace flag 1118.

A common practice is to take advantage of the local SSD that is part of every
Azure VM for storing TempDB. VMs have varying sizes for this local disk, so you'll
have to make sure your local SSD is of proper size before utilizing it. Memory-
and storage-optimized VMs offer a higher capacity local SSD storage than the
general-purpose ones. Depending on the TempDB utilization, isolating TempDB to its
own premium or ultra SSD may be needed. In some extreme cases, isolating different
TempDB data files to a separate disk may also be needed to further distribute I/O. See
Appendix A for information on SQL Server configuration with OLTP workloads.

120 | Performance

Dynamic management views (DMVs) and Query Store

SQL Server on an Azure VM is still SQL Server, regardless of Linux or Windows.
Standard query tuning is still required to make SQL Server run as well as possible.
This means monitoring for queries that are consuming the most resources. Common
approaches are looking for long-running queries, queries that are executed the most,
and those consuming the most CPU and disk I/O.

SQL Server 2005 introduced DMVs as well as dynamic management functions (DMFs).
Every version of SQL Server since has introduced new and improved DMVs and DMFs
to help manage and support SQL Server. Some common DMVs for performance tuning
include:

• sys.dm_os_performance_counters – returns SQL Server performance counters

• sys.dm_db_index_usage_stats – provides detailed usage of indexes to include user
seeks, scans, lookups, and more

• sys.dm_exec_cached_plans – provides all cached query plans currently available

• sys.dm_exec_query_plan – provides the show plan in XML of the query plan

• sys.dm_exec_query_stats – returns stats for cached query plans

• sys.dm_exec_sql_text – returns the text of the query

• sys.dm_io_virtual_file_stats – provides I/O statistics that can provide latency
and throughput usage

• sys.dm_os_wait_stats – returns information about what SQL Server is waiting on

• sys.dm_exec_sessions – returns one row per session

• sys.dm_exec_connections – returns the details of each connection

• sys.dm_tran_active_transactions – provides the transaction state for the instance

There are numerous categories of DMVs, and DMVs can be joined with other tables and
DMVs to create robust queries. Most DBAs have a collection of DMV scripts to use to
collect system information on their SQL Server instances, as well as for troubleshooting
performance issues when they arise.

SQL Server Query Store provides insights into the query plan choice and performance.
It automatically captures the history of queries, plans, and runtime statistics and retains
them for review. You can read more about Query Store in Chapter 3, Hero capabilities of
SQL Server on Azure VMs .

https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-performance-counters-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-usage-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-cached-plans-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sql-text-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-io-virtual-file-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-connections-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-tran-active-transactions-transact-sql

How to optimize SQL Server on Linux | 121

How to optimize SQL Server on Linux
There are several Linux-specific changes that need to be made for SQL Server
deployments on Linux. Some changes may be specific to certain Linux distributions.

An administrator should disable the last accessed date/time (atime) on any filesystem
that is used to store SQL Server data and/or log files. The last accessed date/time
mount option causes a write operation to happen after each read access. This would
generate a massive amount of extra I/O. The mount option should be changed to
noatime to help reduce disk I/O.

In order to deal with large amounts of memory, Linux uses Transparent Huge Pages
(THP). THP automates managing, creating, and working with huge pages. Manually
trying to manage huge pages would be very difficult, so, for SQL Server on Linux, leave
THP enabled.

Memory should be managed so that SQL Server does not starve the underlying
operating system. At the same time, SQL Server should be configured to use as much
memory as possible without causing an issue with the operating system. SQL Server,
by default, will only use 80% of the physical memory. If the remaining 20% is too
significant and wasteful, you can manually configure the value. This is controlled by
the memory.memorylimitmb setting. To change the value, use the mssql-conf script and
set the value for your server to the memory.memorylimitmb value. You should also have a
configured swapfile in place to avoid any memory issues.

Azure BlobCache
When configuring the VM or adding storage, you can set the caching for the disk.
BlobCache provides a multi-tier capability by using the VM's memory and the local
SSD for caching. This is only available for Premium disk and is the default for Azure
Marketplace images. If you've self-installed SQL Server, then you'll have to manually set
up Azure BlobCache.

There are three options for disk caching: ReadWrite, None, and ReadOnly.

For SQL Server workloads, ReadWrite should not be used. ReadWrite can lead to data
consistency issues with SQL Server.

None should be used for SQL Server log files. SQL Server log files write data
sequentially to disk. There would be no benefit to using ReadOnly caching in that
scenario.

122 | Performance

SQL Server data files should take advantage of the ReadOnly caching option. By using
ReadOnly, reads are pulled from the cache, which are stored within the VM memory
and the local SSD. Memory is fast, and the local SSD provides better performance than
the remote SSD storage. What is even more crucial is that the reads from the cache are
not counted towards the disk IOPS and throughput limits. This allows you to achieve
higher overall throughput from the VM. ReadOnly caching provides lower read latency,
higher throughput, and overall higher read IOPS compared to premium remote SSD.

If you are taking advantage of ReadOnly caching for SQL Server, reserve the local
temporary SSD for caching, and do not place TempDB on this disk. Leave the I/O for
caching and place TempDB on its own premium or ultra SSD.

Summary
For great performance with SQL Server on an Azure VM, you need to first size the VM
for your workload, paying attention to CPU, memory, and storage I/O capabilities. You
can easily select the right configuration for your workload with the vast array of Azure
VMs available. Many have been configured to provide the best price for performance
for SQL Server workloads. By leveraging the highest generation VM sizes with Azure
BlobCache and ultra disks, you can run just about any size SQL Server workload on
an Azure VM. To know what size VM you need, you'll need a baseline, and to have
SQL Server run as smoothly as possible, you'll want to ensure that you've configured
it properly for your workload. In addition to SQL Server configuration settings, there
are key changes to make in Linux environments, especially setting noatime to reduce
wasteful I/O.

Chapter links | 123

Chapter links
1. https://bit.ly/2X3b8Ba

2. https://bit.ly/2X2nwRV

3. https://bit.ly/36yDV3r

https://bit.ly/2X3b8Ba
https://bit.ly/2X2nwRV
https://bit.ly/36yDV3r

In the previous chapters, we covered the core elements of running Microsoft SQL
Server in Azure VMs. Now that we understand how to provision and configure our VMs,
we will move our on-premises workloads to the cloud.

Moving on-premises workloads directly to Azure can be daunting. However, by making
use of Azure Virtual Machines (VMs), we can fully realize the potential of cloud-based
agility and versatility without needing to re-engineer our applications. This approach
also helps us when we face challenges such as refreshing aging hardware or upgrading
to supported SQL Server versions. What historically could have taken months to plan
and execute with high up-front spending, can now be handled without the initial
expense in a much shorter timeline.

Moving workloads to
SQL Server on Azure

Virtual Machines

6
By John Martin

126 | Moving workloads to SQL Server on Azure Virtual Machines

We have two main options for handling the migration process to Azure VMs. We can
tune the workload ahead of moving it to the cloud, which can prove to be cost-efficient
but will take longer to realize the value. Or, we can move the workload and then tune
it. The latter approach allows us to make use of cloud capabilities and new SQL Server
features such as Query Store, which accelerates our workload tuning.

Achieving benefits of the cloud such as increased agility and scale is possible by lifting
and shifting workloads to Azure VMs or cloud modernization to an Azure SQL Managed
Instance. The exact target will be dependent upon the workload and its dependencies
as to which is the best fit initially. In addition to the benefits mentioned already, there
are several additional benefits regarding high availability and disaster recovery, which
can be leveraged simply by using the Azure cloud.

In this chapter, we will look at some of the tools and techniques available for lifting
and shifting our workloads in the most time-efficient and cost-effective manner. This
chapter will be divided into three main parts:

• Migration tools and best workload migration practices

• Application considerations

• Moving to the Power BI service from Power BI Report Server

The most important element of any migration is to effectively identify and locate data/
workload that needs to be migrated. In the past, this had to be done manually, but now
there is a great array of tools that we can make use of to achieve this.

Migration tools and best practices
There are many ways to get your SQL Server workload from on-premises to Azure VMs,
but which one should you choose?

In this section, we will look at the best practices to follow as well as tools available to us
in order to successfully migrate on-premises workloads to Azure VMs. Let's begin by
looking at best practices.

Migration tools and best practices | 127

Best practices

When migrating workloads to the cloud there are a few key factors that need to be
considered in order to achieve success. These are:

• Understanding the scope of what is impacted by the migration.

• Identifying the current performance levels.

• Timelines for migration activities.

By understanding these key requirements, we are then able to plan and implement the
migration of workloads.

Not having a full picture of what needs to be included in a workload migration is one
of the most common hurdles that we need to overcome. This is the foundation to
successfully accomplish all of the migration activities. If we do not get this right, it is
akin to building a skyscraper on sand.

Defining migration scope

There are three main elements to this scoping exercise:

1. Identifying systems that are to be migrated and the ones that are not to be
migrated.

2. Technical analysis of the components within the system.

3. Speaking with the consumers of the system to understand their needs.

First and foremost, we need to understand and identify the servers and databases that
we will be moving. Are the databases currently co-hosted with other databases on the
same server or are they hosted on a dedicated server? Understanding this will help us
get the information that we need to prepare the target server.

Once we understand which systems are in scope, we need to analyze the source
system(s). Identifying both instance- and database-scoped configurations and objects is
key. Everything ranging from linked servers, credentials, and logins, to SQL Agent jobs
will need to be assessed to identify whether they need to be migrated or replaced on
the new platform.

Finally, by speaking with the consumers at this time, we can understand the perceptions
around the current performance and availability requirements. The availability
requirements help us define the migration process for the database(s) that need to be
moved.

128 | Moving workloads to SQL Server on Azure Virtual Machines

Identifying current performance

An age-old problem with migrating workloads from one system to another is the
dreaded "It's not performing like it used to" statement from the consumers. The best
way to tackle this is to ensure that you have solid benchmarks and performance details
for comparing workloads post-migration.

Note

When looking to understand SQL Server performance, you should really base your
monitoring and analysis on the Waits and Queues methodology as seen in this
Microsoft whitepaper1.

By using the Waits and Queues approach we can rapidly identify the key performance
counters we need to track. In the queues category, we can capture counters that fall
into three key pillars. Underpinning these is the foundation of what we can think of as
"general" counters, which we can use to track workload throughput.

Figure 6.1 highlights some of the key performance metrics (queues) that we need to
consider when understanding our SQL Server workloads.

Figure 6.1: Key performance metrics

https://docs.microsoft.com/previous-versions/sql/sql-server-2005/administrator/cc966413(v=technet.10)
https://bit.ly/36uDXcF

Migration tools and best practices | 129

Note

It should be noted that Page Life Expectancy (PLE) on its own is not a key
performance indicator for your workload. It is important to understand the size of
the buffer pool and how much of your I/O sub-system capability is being consumed
to maintain the PLE number to dictate what is appropriate and what is not.

When these key performance metrics are combined with server-level wait statistics
collection, it will give us a good idea of whether there are any pain points. Additionally,
this capture will act as a performance baseline that we will use to validate the new
system's performance.

Migration timeline

Defining a timeline for migration activities is vital but it needs to be realistic. You may
come across a number of situations where the timelines have been set with unrealistic
goals. This results in us needing to cut corners and delivering an inferior customer
experience. Key factors that we should consider when setting migration timelines are:

• System complexity.

• Platform and application validation.

• Volume of data to be migrated.

• Acceptable downtime for the business.

These four elements will help us create an estimated timeline for a successful migration
process. Within these phases, it is important to identify where we can run parallel tasks
as well as to make use of automation for repeatable tasks.

Automation is key when performing migration activities. Everything ranging from the
initial analysis to platform validation, and ultimately the migration itself, allows us to
perform consistent and repeatable database migrations.

Migration and analysis tools

Microsoft provides several great tools for helping us move on-premises workloads to
the cloud. They range from ones that help us identify blockers through to those that
move our databases. The tools that we are going to look at here are:

• Microsoft Assessment and Planning (MAP) Toolkit2

• Data Migration Assistant (DMA)3

• Database Migration Service (DMS)4

https://bit.ly/2ZzTqXu
https://bit.ly/2AdSLjF
https://bit.ly/2X1ZJkT

130 | Moving workloads to SQL Server on Azure Virtual Machines

In addition to these, there are also some key community-based open-source tools
that we can use to speed up the process and automate the migration of workloads,
including:

• dbatools5

• WorkloadTools6

The tools listed above fall into two categories: analysis and migration. Some of them can
perform or facilitate both such as the Data Migration Assistant (DMA) or dbatools, but
that is not the primary purpose.

One of the most common challenges we will face with any migration is not
understanding the requirements of our workloads. There is a common misconception
that because we are moving from on-premises servers/VMs to cloud-hosted VMs, we
don't need to do our homework. Although the operating system and SQL Server that we
have been running on-premises are the same, the underlying platform and the overall
operating model is radically different.

MAP Toolkit

Our first port of call is to start with gathering key information about our existing
environment. The quickest and easiest way to perform this is with the MAP Toolkit from
Microsoft. It is a free tool that can discover and analyze SQL Server systems. This has
the advantage of letting us scan one or more servers and discover a lot of detail around
the SQL Server elements that are installed on our source systems.

Figure 6.2 shows how the MAP Toolkit can help us identify the installed components on
the source servers. This will help us understand whether we can simply lift and shift to
the cloud or need to augment with additional services such as Azure Data Factory or
Power BI.

Figure 6.2: MAP database analysis

https://bit.ly/2TBpsyE
https://bit.ly/2zlUtzJ

Migration tools and best practices | 131

Using MAP database analysis, we can capture details for the configuration of the server
and databases by generating reports from the MAP Toolkit. This information then allows
us to define the configuration of the target systems.

Data Migration Assistant (DMA)

The DMA takes our analysis to a deeper level and starts assessing whether we have any
blockers. It also allows us to view any recommendations that we might want to address
ahead of moving our database.

DMA is designed to perform an analysis of many different combinations. We are going
to start with SQL Server as the source and target SQL Server on Azure VMs. The
process for configuring DMA to assess databases and servers can be seen in Figure 6.3.

Note

While having a high degree of parity, SQL Server 2019 on Linux does not have all
the same features as the Windows version. If we are targeting SQL Server on Linux,
the DMA helps us spot any potential incompatibilities without us needing to review
the documentation manually.

There is a logical flow to using DMA for analysis, which will give us a clear and concise
report about any potential blockers. Before we run the analysis, we need to understand
what we want to know and where we are going from and to. We can then get into the
specifics of which tests we want to run as well as the specific versions of SQL Server.
One of the useful features in the DMA is it's ability to load in workload trace files for
the database(s) we are analyzing. And we would encourage you to do this to get a better
picture of what is going on. Once all of this is complete, you can run the analysis and
then review the report.

Note

It is possible to automate the use of DMA with command-line arguments. More
details can be found here7.

https://bit.ly/3gpoLSP

132 | Moving workloads to SQL Server on Azure Virtual Machines

Figure 6.3: DMA analysis steps for the SQL Server VM target

The subsequent DMA report highlights legacy T-SQL syntax and other incompatibilities,
deprecated and discontinued features, and recommendations for feature usage in
the target version. For example, it can identify potential objects where dynamic data
masking or Always Encrypted column-level encryption features could be beneficial
based on the object names.

While DMA has a primary role in analysis, it can also perform basic database migrations.
However, for a richer and more robust migration experience, we would suggest using
Azure Database Migration Service.

Migration tools and best practices | 133

WorkloadTools

The final piece of the puzzle to successfully plan moving workloads to Azure is the
workload analysis.

Here, we would recommend you look at an open-source tool called WorkloadTools.
This tool can capture, analyze, and replay workloads. This capability means that we
can ensure that a migrated workload will behave in the expected way once it has been
moved to Azure.

By using WorkloadTools, we can mirror production workloads in an Azure VM. This
allows us to demonstrate that the new system will meet the performance requirements,
while at the same time allaying any fears that you might have about the new platform.

Figure 6.4 illustrates the high-level architecture to configure the WorkloadTools
system to collect, replay, and compare workload details. The first step is to capture
the workload metrics from the source system to be migrated. This is replayed to a test
copy of the database on the target infrastructure configuration. The second step is to
collect the performance metrics from the replayed workload. Both activities store their
performance data in a central database in different schemas. This facilitates step 3,
which is where we review and compare the metrics from the two captures to ensure
that we have a comparable level of performance. If not, we can then reconfigure the
target system and rerun our tests and captures.

Figure 6.4: WorkloadTools architecture

134 | Moving workloads to SQL Server on Azure Virtual Machines

Once we have finished our analysis, we can move the database and its workload. We
can also then reuse these tools to perform continued troubleshooting and workload
analysis through the lifetime of the system. By storing the data each time, we can track
improvements or regressions over time.

SQL Server is a highly versatile and adaptable database engine with a mature tooling
ecosystem. This means that we have a number of different ways to move databases to
the cloud.

One of the most common methods for migrating databases between SQL Server
systems is to perform a backup and restore. However, depending on the size of the
database, this can range from a very short time to many hours for multi-terabyte
databases. We can look at options such as log shipping, transactional replication, or
availability groups to perform the migration with less downtime. But these will depend
on a number of external factors that could complicate matters. We will look at how
to migrate databases by manually taking a backup and restoring it to the target. We
will also see how to automate this with log shipping and then touch on Database
Migration Service (DMS) and DMA to migrate databases. But first, we need to get the
prerequisites moved at the server level.

Key analysis points

Once we have completed our analysis phase, we will be in a position to move forward to
the migration planning. However, in order to plan effectively, we need to have collated
our analysis data so that it is able to inform the following key decision points:

Figure 6.5: Key decision points for migration planning

Analysis Point Details

Migration Blocker Deprecated, discontinued, or unsupported features that
prevent migration to Azure Virtual Machines.

Business Requirements Disaster recovery (RPO/RTO), migration downtime
windows, cost, and licensing.

Resource Usage CPU, memory, I/O, storage volume, network
bandwidth,and latency.

Workload Requirements Parallel query processing, TempDB usage, OLTP versus
DSS, and collation.

Security Requirements Geo-locality for data, encryption requirements, user
access, and RBAC.

Application and User Experience Application response times, transaction throughput,
and query response times.

Maintenance Operations Maintenance windows, job runtimes, and resource

Migration tools and best practices | 135

Once we have these key data points, we can build out an information pack, which we
will be able to refer back to during our migration.

When reviewing the output from this analysis phase, we need to do so with a cloud
mindset. This means that whereas historically we would buy and provision servers with
lots of headroom to grow, instead now, we want to run our servers hot. The ability to
easily scale up our servers without needing to first put physical resources in place is
one of the great capabilities of cloud-based VMs. For example, we should review our
CPU resource usage; if it is 40% with spikes to 60% on-premises then when we move to
the cloud, we can look to pick a machine with less compute that results in us running at
60% with spikes to 80%. This will help us get a better ROI on the cloud infrastructure
we deploy.

Another area that many people neglect to review properly is the maintenance window
activity. Database consistency checking, index and statistics maintenance, and backups
are all still applicable in the cloud. Ensuring that you have the appropriate resources in
place to perform these activities in the time windows available is important.

dbatools—migrating instance-level objects

While moving the database takes much of our focus, a key prerequisite is that instance-
scoped objects are migrated first. If we do not move our logins, credentials, linked
servers, Agent Jobs, etc., then we will not have a successful migration as there are
database dependencies on many of these. There are many ways to perform these
tasks—from custom T-SQL to SSIS and even bespoke SMO application code. However,
we would recommend using the dbatools community PowerShell module for these
activities.

Within dbatools there are several commands that are dedicated to the migration
of SQL Server objects. What this means is that we can write PowerShell scripts to
perform these migration activities with the added benefit of then leveraging automation
technologies to execute them.

136 | Moving workloads to SQL Server on Azure Virtual Machines

The key migration commands that we should look at understanding and using are:

Copy-DbaAgentAlert

Copy-DbaAgentJobCategory

Copy-DbaAgentJob

Copy-DbaAgentOperator

Copy-DbaAgentProxy

Copy-DbaCredential

Copy-DbaLogin

Copy-DbaCustomError

Copy-DbaDbMail

Copy-DbaLinkedServer

Copy-DbaXESession

Copy-DbaSpConfigure

Copy-DbaAgentSchedule

There is also the Start-DbaMigration command within the PowerShell module. This
will perform many of the key activities to move instance-scoped items, including all
the items listed above, as well as moving the database, and more. Details about this
command can be found here8.

Note

It is important to remember to consider whether there are third-party backup
agents etc. that you will need to install on the new servers. For example, if you are
using a third-party backup solution, you might need a new agent and configuration
to maintain your database maintenance routines.

https://bit.ly/2TG9Zgz

Migration tools and best practices | 137

One of the key areas that sits outside of the database that is migrated is the backup
of database assets. Within Azure VMs there are all of the existing options related to
built-in backup and restore capability. However, by moving to Azure VMs it is possible
to consider additional capabilities in this space. There are two key options that are
available to us:

• Backup to URL

• Azure Backup

Backup to URL is a feature of SQL Server that is part of the built-in backup and
restore capabilities. It is relatively seamless to switch from this built-in backup to SMB
file sharing to target an Azure Blob storage account. By making use of this we can
remove the management of backup locations on Windows file shares or local storage
volumes. Additionally, because of the locality of the backup target, the performance
considerations around networking that we would have had on-premises are largely
mitigated.

Azure Backup for Azure VMs with SQL Server provides a centralized management and
reporting pane for your backup infrastructure. This is a native capability within the
Azure platform and has a specific SQL Server agent that can be deployed. The data itself
is then backed up and stored in Azure Recovery Services vaults.

In my experience, the choice of which to use depends largely on support team models
and the larger infrastructure. If the database servers are the only ones being deployed
to the cloud at this time, then Backup to URL is my preference as it is still firmly in the
realm of the DBA to set up and manage. If there is a larger infrastructure deployment
where other IaaS VMs are in play, then I would use Azure Backup as it then provides a
single-pane-of-glass view on all backup activity in enterprise deployments on Azure.

Both of these options provide an additional level of protection for SQL Server backups
in ransomware scenarios. By having them isolated in another storage platform, it
means that in the event that your infrastructure is compromised, you'll be safe in the
knowledge that you'll be able to recover.

138 | Moving workloads to SQL Server on Azure Virtual Machines

Migrating databases to the cloud

Now that we understand our workloads, the dependencies, and have all the prerequisite
work completed, it is time for us to do the heavy lifting. Now we will look at how we can
move our databases to our Azure VMs.

Backup and restore

As of SQL Server 2012 SP1 CU2, it is possible to back up directly from SQL Server to
Azure Blob storage. This greatly simplifies the process of migrating databases from
SQL Server on-premises systems to those based in the cloud. By using Blob storage, we
can remove the need to extend our network to Azure by using secure transfers via the
public storage endpoints.

This can be achieved by following the steps shown in Figure 6.6:

Figure 6.6: Backup and restore procedure in PowerShell

Create resource group

Generate Shared Access Signature (SAS) token

Crate blob containers in storage account

Create storage account

Step 1

Step 2

Step 3

Step 4

Migration tools and best practices | 139

Once we have the Azure storage in place, we can follow the migration process shown in
Figure 6.7 to move the databases:

Figure 6.7: Database migration process via backup and restore

Note

It is important to remember when restoring these databases that if the path on the
target system is different from the source, you will need to use the MOVE clause
in your restore statement and set the file paths that are to be used in the new
environment.

Log shipping

Building on the backup and restore methodology, we largely automate the process by
leveraging log shipping. It has several additional benefits, which we will cover in this
section.

When we want to minimize downtime, we can make use of the log shipping feature
in SQL Server to get the source and destination databases aligned. This allows us to
minimize the downtime for switching between systems as the final log transfer should
be small and quick. All that remains then is to re-point the applications to the new
databases.

Step 1

Step 2

Step 3

Step 4

Create Credential on source SQL Server
Create Credential on target SQL Server

Backup SQL Server database to Azure Blob storage
Backup transaction log to Azure Blob storage (optional)

Restore SQL Server database to target Azure VM

Remove Credential from source SQL Server
Remove Credential from target SQL Server

140 | Moving workloads to SQL Server on Azure Virtual Machines

Log shipping is a tried and tested technique for moving databases between servers and
is familiar to many database professionals. This approach also has the benefit of being
able to seed multiple availability group replicas ready for migrating to a high-availability
configuration.

However, it should be noted that to configure log shipping from on-premises SQL
Server systems to Azure VMs, the network will need to be stretched to Azure. This can
be done via a service such as ExpressRoute or a site-to-site VPN. By doing this, we are
then able to easily make backups locally on-premises before copying them to Azure and
restoring them in our VM.

Figure 6.8: Log shipping to Azure topology

Migration tools and best practices | 141

As we can see here in Figure 6.8, log shipping is a logical extension and an automated
form of backup and restore, which was discussed earlier. It is important to understand
how to tune databases for performance by using the built-in backup and restore
features of SQL Server, from adjusting the number of backup files, all the way through
to the BUFFERCOUNT and MAXTRANSFERSIZE options.

Note

Refer to this documentation for more information on the backup9 and restore10
commands.

At this point, we have now understood our workloads, fulfilled prerequisites, and
migrated our databases to the cloud. Now we need to think about some of the external
factors and considerations around what uses these databases.

Using DMS and DMA to migrate databases

Up until now, we have looked at how to perform the migration of databases manually or
with built-in SQL Server capabilities. However, there are other options available in the
form of DMA, which we covered earlier, and the Azure DMS.

DMS is a multi-faceted Azure service that can be used to migrate databases from
multiple sources to SQL Server in Azure. This service will largely automate and
coordinate the migration of database assets from on-premises to the cloud, providing
a central migration project dashboard that we can reference. Creating and configuring
a migration project is achieved via the Azure portal or PowerShell using the AZ module.
This latter ability means we can easily template a migration project, allowing us to
perform migrations at a large scale from on-premises to Azure in the event that we
have many servers and databases to migrate.

https://bit.ly/2X3uMg0
https://bit.ly/2ZDzh2S

142 | Moving workloads to SQL Server on Azure Virtual Machines

Figure 6.9: DMS migration to Azure VM

When we are moving databases from on-premises to Azure VMs we need to configure
some prerequisites within the environment to facilitate this. Notably, these include:

• An on-premises file share that SQL Server can send backup files to. This is an SMB
share on port 445.

• An Active Directory (AD) domain account with permissions to access the share so
that DMS can read the data.

Application considerations | 143

DMS will help us automate the migration of databases from one SQL Server system to
another by managing the backup and restore process. This is fine when we have one or
two SQL servers to move; however, it really comes into its own when managing large-
scale migrations effectively. The single pane of glass showing us progress and status is
invaluable in coordinating the migration effort.

Note

At the time of writing, SQL Server 2019 in an IaaS VM is not a supported target for
DMS. However, this is where DMA can step in and help us achieve our objective.

Previously, we used DMA as an analysis tool to look for blockers in our migration
planning. It is also capable of helping us migrate databases from one server to another.
Instead of performing an assessment, we create a migration project and specify our
source and destination. As before, it is possible to use the command line to automate
this process, so again, we can look to start moving larger volumes of databases and the
data within them.

Application considerations
While moving the database elements to the cloud, it is important for us to not forget
the application layer. For any cloud migration, it is important to consider application
details such as its location and its sensitivity to latency. Building hybrid environments
where the application remains on-premises while the database is hosted in an Azure
VM is entirely plausible. However, if the application cannot handle the increased latency
to the database, then you should really consider moving the application into the cloud.
By doing so you can eliminate a large portion of the latency.

Beyond that, we need to really understand the way that the application authenticates to
the SQL Server database. By lifting and shifting to an Azure VM we can avoid the need
to re-engineer an application to support Azure AD for PaaS systems. If we are looking
to include SQL Server on Linux as part of our migration, there are some additional steps
we need to perform to configure the Linux VM to use AD authentication. This will then
allow the users to connect using AD authentication.

Note

Here, you can find the key steps to configure AD authentication11. This covers all
the steps you need to enable the use of AD user accounts to access database
resources.

https://bit.ly/3eirDPl

144 | Moving workloads to SQL Server on Azure Virtual Machines

One big advantage of migrating workloads from traditional on-premises systems to
Azure VMs is the ability to scale up and down as needed. By tracking the seasonality
in the workloads and usage of our applications, we can plan resource utilization. For
example, if we have a financial services system, we can scale the system up for key
events like the end of the tax year and later scale it down as required. Likewise, for
retail platforms, it is possible to scale up for Black Friday, Christmas, etc. and then scale
down during quieter periods.

This increased agility and adaptability provided by cloud platforms ensures that
customer needs are met.

Another key element that commonly gets overlooked at the application level is updating
the connection drivers used by the application to connect to SQL Server. Over the
last few years, Microsoft has resurrected the OLE DB driver, expanded the ODBC
driver, and deprecated the SQL Server native client12. To support the latest features of
high availability and security, we should look to update the connection drivers on the
application servers. This also has a benefit in many situations for performance and the
stability of the workload placed on the new version of SQL Server.

Congratulations—we have now migrated our application workloads to Azure by lifting
and shifting them to IaaS VMs. Hopefully, you can now see that this is not the monster
that many make it out to be. Yes, there are pitfalls, but with a clear method and process
in place these can be avoided, and a successful migration can be achieved. The only
outstanding element that we have not discussed is our reporting capabilities options. In
the next section, we will look at the evolution of reporting services and how Power BI
fits into the grand scheme of things.

Reporting in the cloud—Power BI
Historically, reporting in SQL Server on-premises has been handled by SQL Server
Reporting Services. Over time it has had only minor increments in capability and
enhancements. More recently it has been broken out of the main product as a separate
download. This has been in tandem with the introduction and rapid expansion in the
capability of Power BI Report Server, which is the next generation of on-premises
reporting capability.

https://bit.ly/2AWXSoN

Reporting in the cloud—Power BI | 145

When making the decision about whether to install Reporting Services (SSRS)
or Power BI Report Server (PBIRS), or to leverage the Power BI cloud service, it
is important to understand the pros and cons of each option. While the Power BI
service provides out-of-the-box high availability, huge scalability, and easy access for
developers and information consumers, it does come with the downside of ceding
control of feature and product update schedules to Microsoft. Contrast this with
the VM IaaS deployment, where we have a lot more control over the configuration
of the operating system and components that are installed. But this comes with the
overhead of us needing to ensure that we get the IaaS design right for the deployment
of services in availability zones or groups. We are also responsible for configuring the
high availability and disaster recovery pieces of the infrastructure to achieve the uptime
SLAs for IaaS VMs.

It is important to remember that the decision here should be primarily driven by which
one best meets the requirements of the service we need to deliver. It is very common
for technical teams to fall back on what they know and pick a technology out of
comfort. Once the requirements are established and evaluated, the key driver becomes
supportability. Putting a system in place where we have minimized our support
overhead will put the long-term stability of the solution in a much better place.

PBIRS has several of the capabilities of the cloud-borne Power BI service but at the
same time lacks the richness of its bigger sibling. One of the key drawbacks is that it is
a software service that needs to be installed and managed within environments. On the
other hand, the Power BI cloud services act as a SaaS/PaaS model. This means that we
do not have to worry about updates and upgrades throughout the product lifecycle.

146 | Moving workloads to SQL Server on Azure Virtual Machines

Figure 6.10 illustrates a basic PBIRS deployment scenario. We have the report server
on-premises and it can connect to local and cloud-based relational engines.

Figure 6.10: Power BI Report Server on-premises

Reporting in the cloud—Power BI | 147

When we contrast this with the cloud deployment model, we can clearly observe
the increase in scalability and capability. This is illustrated in Figure 6.10. Here
we can leverage the capabilities of Power BI to connect to a multitude of services
beyond relational engines, including web services and APIs for many common cloud
applications. Here's a complete list13 of data sources that Power BI supports for datasets.
We can also deploy Power BI gateways close to our data sources if we are operating
them on-premises for hybrid scenarios or in multi-cloud environments.

Figure 6.11: Power BI Cloud service deployment

https://bit.ly/2B2sGVn

148 | Moving workloads to SQL Server on Azure Virtual Machines

When we make the jump from on-premises or IaaS hosted PBIRS to the PaaS Power BI
service, the whole way we think about and manage the platform will change—moving
from hierarchical folder structures with prescribed permission sets to workspaces.
These workspaces can be managed or personal, with users able to collaborate and share
content easily. As such, when moving to the PaaS-based solution, putting the effort in
to get the governance in place early on is very important.

After we have made the decision to move to the Power BI service, we need to think
about what types of reports our users consume. Do we simply lift the paginated
reporting from PBIRS and place it in the service in workspaces that mimic our folder
structures? Or, do we look to realize the capabilities available and leverage more
dynamic and diverse dashboarding and reporting capabilities? The former is more akin
to the lift and shift approach from earlier when we looked at the database elements.
If we want to take the latter option, we can lift and shift the native reports (.pbix file)
deployed on-premises to the cloud service. But to realize the true capabilities and value
for our users, we will need to look at re-working some of the reports and dashboards.
However, this can be done incrementally so, while not ideal, there are no blockers
preventing us from rapidly using the Power BI service.

As with the migration of SQL Server databases, which we covered earlier, there are
other supporting artifacts that we need to migrate too. These include, but are not
limited to, email subscriptions, custom visualizations, security configurations, and
bookmarks. Depending on the complexity of your deployments, the volume and scale of
these elements will vary.

Other key elements that we need to consider during the deployment and utilization of
the Power BI service are:

• Security and integration with Azure AD.

• Pro versus premium tiers.

• Monitoring and managing the Power BI service.

• Licensing and user management.

Reporting in the cloud—Power BI | 149

By combining all these elements and migrating our on-premises PBIRS to cloud
services, we can build and manage a comprehensive analytics platform based in
the cloud.

There are several Microsoft whitepapers14 covering planning, deployment, and the
management of Power BI. These will help you plan and execute a successful deployment
and migration to Power BI from on-premises systems. This content is invaluable
in creating strong governance and an operating model to ensure data security and
availability for our users.

ETL in the cloud

While our reporting platforms can connect to most data sources and allow us to
perform operational reporting on OLTP platforms, when it comes to strategic reporting
it is very common for us to need to report from a centralized repository of data that
brings many sources into one place. On-premises the tool of choice is SQL Server
Integration Services (SSIS). In the cloud we have a couple of other options available
to us.

The shortest route to getting our ETL working in Azure is to deploy SSIS to an Azure
VM and then deploy the SSIS project to this server. This mirrors our on-premises
configurations and requires a very limited re-work of SSIS projects.

However, by moving our workloads to Azure, we also get the option of Azure Data
Factory (ADF) to run our ETL workloads. There are two options here: one being to
rewrite our SSIS ETL processes as ADF pipelines and the other being to host our SSIS
packages in Azure and execute them through the Azure SSIS integration runtime15.

This latter option allows us to build a hybrid ETL solution where we can leverage our
existing on-premises SSIS projects with very little change, as well as allowing the use of
ADF for new development and controlled migration to the PaaS ADF service.

We have the ability to take a complete on-premises data platform ecosystem and run it
in Azure IaaS VMs. Alternatively, with the Power BI service and ADF, we have the ability
to migrate our data stores and at the same time leverage the PaaS capabilities of Azure
to streamline our operations.

https://bit.ly/3d7OcWQ
https://bit.ly/3bXZtYh

150 | Moving workloads to SQL Server on Azure Virtual Machines

Summary
As we worked through this chapter, we had a look at how we can accelerate our
adoption of cloud data platforms with SQL Server and Power BI. Microsoft recommends
that the fastest way to realize the value of SQL Server in Azure is to lift and shift. This
has many benefits from a familiarity perspective, meaning the removal of many barriers.

We looked at how to prepare for and then execute a migration to SQL Server on Azure
VMs, highlighting several great free tools that are available to ensure a successful
migration. Here's a step-by-step guide on how to migrate from on-premises SQL Server
to SQL Server on Azure VMs16.

But this is only the beginning. Once we have got our databases into Azure, we can then
look to take the next steps and move from an IaaS solution to PaaS. Many of the tools
and techniques we have covered here still apply. There are more considerations on
the application front, especially around authentication. But making the step to move
to Azure SQL Managed Instance or Azure SQL Database is much smaller once we are
there.

In the next chapter, we will be looking at how to use SQL Server in Azure VMs for
building hybrid data platforms, looking at some of the key considerations of data
replication, availability, and disaster recovery scenarios.

https://bit.ly/2LXJM93
https://bit.ly/2LXJM93

Chapter links | 151

Chapter links
1. https://bit.ly/36uDXcF

2. https://bit.ly/2ZzTqXu

3. https://bit.ly/2AdSLjF

4. https://bit.ly/2X1ZJkT

5. https://bit.ly/2TBpsyE

6. https://bit.ly/2zlUtzJ

7. https://bit.ly/3gpoLSP

8. https://bit.ly/2TG9Zgz

9. https://bit.ly/2X3uMg0

10. https://bit.ly/2ZDzh2S

11. https://bit.ly/3eirDPl

12. https://bit.ly/2AWXSoN

13. https://bit.ly/2B2sGVn

14. https://bit.ly/3d7OcWQ

15. https://bit.ly/3bXZtYh

16. https://bit.ly/2LXJM93

https://bit.ly/36uDXcF
https://bit.ly/2ZzTqXu
https://bit.ly/2AdSLjF
https://bit.ly/2X1ZJkT
https://bit.ly/2TBpsyE
https://bit.ly/2zlUtzJ
https://bit.ly/3gpoLSP
https://bit.ly/2TG9Zgz
https://bit.ly/2X3uMg0
https://bit.ly/2ZDzh2S
https://bit.ly/3eirDPl
https://bit.ly/2AWXSoN
https://bit.ly/2B2sGVn
https://bit.ly/3d7OcWQ
https://bit.ly/3bXZtYh
https://bit.ly/2LXJM93

This final chapter builds on what you've learned in the previous six chapters and
discusses the various ways in which you can develop a hybrid environment, leveraging
Azure services to complement your on-premises SQL Server environment.

We will explore several Azure licensing and technical offerings, including Azure Hybrid
Benefit and Backup to URL. We will discuss the basic principles of disaster recovery,
and then provide use cases for Azure VMs running SQL Server on Windows and Linux,
known as infrastructure as a service (IaaS). We'll also cover the ways you can keep a
workload in sync between your on-premises and Azure environments, and how these
relate back to scalability, migration, and disaster recovery scenarios. We’ll finish with a
summary of the chapter.

Hybrid scenarios
(Microsoft SQL IaaS)

7
By Randolph West

154 | Hybrid scenarios (Microsoft SQL IaaS)

What is Azure Hybrid Benefit?
The majority of organizations that use SQL Server do so in an on-premises environment
with SQL Server Standard or Enterprise editions running on physical or virtual
machines in a datacenter.

With the advent of Azure cloud services, you might be tempted to explore this new
world but feel that your investment in on-premises licensing is keeping you from doing
so. With Azure Hybrid Benefit, you can make use of Azure services at a reduced cost,
provided you have Software Assurance or an equivalent subscription license.

Note

Software Assurance is not a license. Instead, you can think of it as an additional
benefit that either comes with the license or something that you purchase as an
add-on as part of your volume licensing deal. You can read the Software Assurance
Frequently Asked Questions at this Microsoft documentation1.

This unique offering gives you the opportunity to build scalable, highly available, and
disaster-resilient solutions for your organization, without needing to invest in ongoing
hardware maintenance, saving you money and resources in the process. Azure Hybrid
Benefit even gives you a free asynchronous disaster recovery replica in Azure if you use
availability groups. We discuss this scenario later in the chapter, in the Use cases for SQL
Server on Azure VMs section.

There are three key scenarios that a hybrid SQL Server infrastructure provides:

• A fully redundant disaster recovery environment in the cloud

• Secure offsite backups to Azure Storage using Backup to URL

• Read scalability across regions with readable secondaries and replication

Note

You can read more about Azure Hybrid Benefit in the Frequently Asked Questions
available at this Microsoft documentation2.

Now that we've covered Azure Hybrid Benefit, let's dig into the basics of disaster
recovery.

https://bit.ly/36vt762
https://bit.ly/3d3W9wg

What is disaster recovery? | 155

What is disaster recovery?
When disaster strikes, your job as a SQL Server database administrator is to ensure
business continuity by recovering the data estate to a previously known good state, in
as short a time as possible. Disaster recovery is your organization's insurance policy and
relies on support from the organization as well.

Note

A disaster is any event that causes an unplanned interruption in business
continuity through unrecoverable failure.

At all times, remember that high availability is not disaster recovery. You're considering
what happens when high availability could also fail, even if it makes use of the same
underlying technology.

A good disaster recovery plan starts with a healthy database. You can make use of the
maintenance features inside SQL Server, including maintenance plans with SQL Agent
inside SQL Server Management Studio and Azure Data Studio, PowerShell cmdlets,
from the command line using SQLCMD, and those provided by third parties, to keep
your databases in good health.

Take native backup—always. If you need to perform point-in-time recovery for any
reason, then you need to know about the recovery models SQL Server offers (full,
bulk-logged, and simple). This, in turn, will help you learn the difference between full,
differential, and transaction log backups. Practice backing up and restoring databases,
including system databases. Learn when you would need to do a copy-only backup, and
how they affect differential backups.

You can back up your data estate using Azure Storage as a target, which we discuss in
the Backing up databases to a URL section later in this chapter.

Once you've backed up your database, the only way to prove that your backups can be
recovered to a previously known good state is to continuously test that backup. The
best way to test a SQL Server backup is by restoring it and running a data consistency
check with the DBCC CHECKDB Transact-SQL (T-SQL) command against it. No other
method can provide the same peace of mind. If your organization uses file-system-level
backups, make sure you also have SQL Server native backups close by.

156 | Hybrid scenarios (Microsoft SQL IaaS)

Finally, and especially for the purposes of this chapter, you need to make sure that your
verified backups are copied securely offsite (remember that most databases contain
sensitive data) so that if something happens to your on-premises environment, you can
get those backups and restore them as fast as possible. Encrypt your backups, even if
you don't encrypt your database, and you should encrypt your database.

Note

Please refer to Microsoft Docs3 for information about disaster recovery with
Azure SQL Database.

Disaster recovery is defined by your organization in a service-level agreement or SLA.
This document may be part of a larger business continuity plan, and it should comprise
at least two main points:

• Recovery point objective (RPO)

• Recovery time objective (RTO)

We'll talk about each of these in the following sections and give you a refresher on
Accelerated database recovery (ADR).

Recovery point objective

When disaster strikes, your goal is to ensure minimal data loss, which is usually
measured in seconds or minutes. The RPO defines how much data your organization
is prepared to lose should something go wrong. For example, your office building
suffers an electrical fire and the server room burns down. If your SLA states that up to
15 minutes of data loss is acceptable to the business, and you have a plan in place to
keep your disaster recovery site in sync within a 5- to 10-minute window, then you are
probably going to be within the requirements of the SLA.

Even with a hybrid setup, you need to make sure you are taking regular database
backups and the backup frequency should be at least one half of the data loss window
to allow time for backups to find their way to a secure offsite location. For example,
say your RPO is 15 minutes. If your transaction log backups are set to a 15-minute
interval and a disaster occurs after a backup has taken place but before those backups
were copied securely offsite, your data loss will be greater than 15 minutes, taking you
outside the requirements of the SLA.

https://bit.ly/2XyofcB

What is disaster recovery? | 157

Recovery time objective

After a disaster has taken down your data estate, the RTO dictates how quickly you
need to bring up the environment again, which is usually measured in minutes or hours.
It doesn't matter how you achieve this, and generally, budget and resource constraints
will define the most cost-effective manner to do so. A major consideration is how you
prioritize data recovery. You may have a lot of archive data that is infrequently queried,
which does not need to be brought online immediately. Your SLA must define terms for
this process as well.

Again, even in a hybrid environment, you must ensure that your database backups
can be restored as quickly as possible. It is feasible that a failover could itself fail, so
think of your backups as a last resort that must always work. Use a combination of full,
differential, and transaction log backups to reduce this recovery window.

Note

You can think of transaction log backups as incremental backups, whereas
differential backups can be used as a shortcut to avoid having to restore each
transaction log in sequence. Both differential and log backups can be combined
with the last full backup to bring your database online.

The DR plan should also make allowances for network-related failover, including DNS
propagation. We recommend that you set your time-to-live (TTL) values to between 5
and 15 minutes, ensuring a faster failover if an IP address must be updated.

Accelerated database recovery

ADR is a new feature introduced in SQL Server 2019 that works at the database
level. It is not enabled by default because it changes how SQL Server uses the data
file. However, its benefits are most apparent during crash recovery, which happens
whenever a database is brought online, restored from backup, or when SQL Server
starts up. Instead of using the transaction log file or TempDB, ADR makes use of the
main data file for keeping track of transaction state and can dramatically reduce
rollback times for long-running transactions.

Note

ADR is also available in Azure SQL Database.

158 | Hybrid scenarios (Microsoft SQL IaaS)

ADR increases data file usage, but the trade-off is improved recovery times, which
benefits disaster recovery.

Now let's address some licensing benefits around disaster recovery before getting into
the next section.

How does licensing influence disaster recovery?

Under the terms of Azure Hybrid Benefit, you are allowed two failover instances for
disaster recovery for each primary workload, provided that one of these is located on
an Azure VM. For the second server, the only condition is that it must be dedicated for
your use. It can be hosted on-premises or on an Azure VM.

The benefit is calculated based on the number of cores licensed for your primary
workload and depends on whether your primary workload is located on-premises or on
an Azure VM. In both cases, you get one free passive core for high availability / disaster
recovery and one free passive core for disaster recovery (asynchronous commit only). If
your primary workload is on-premises, you also get one free passive core for DR on SQL
Server on an Azure VM (asynchronous commit only).

Note that these benefits apply exclusively to the SQL Server core license. You are
responsible for Azure-related costs including Azure Storage, compute, and networking.
If you have questions, you can always speak to your Microsoft licensing specialist to
determine what rights you have as per your enterprise agreement.

Note

Read more about these benefits on the SQL Server blog4. Additional information
on SQL service licensing and disaster recovery benefits can be found at this
Microsoft blog5.

In the next section, we'll look at an easy way to get database backups copied securely
off-site.

https://bit.ly/2yy72HH
https://bit.ly/2ZyWvqN

Backing up databases to a URL | 159

Backing up databases to a URL
Starting with SQL Server 2012 with Service Pack 1 CU 2, you can back up your SQL
Server database to an Azure Storage account, also known as Backup to URL. Since SQL
Server 2016, you can even back up your database to a URL simultaneously with a regular
on-premises backup. This allows you to have both a local and secure offsite backup of
your databases from one backup command.

Note

Backup to URL can be executed from the SQL Server Management Studio
(SSMS) backup wizard, T-SQL, SQL Server Management Objects (SMO), and
PowerShell cmdlets, including third-party PowerShell modules. For more about this
feature, visit Microsoft Docs6.

Backup to URL gives you the peace of mind that when disaster strikes, you will be able
to access your backups almost immediately. With a solid disaster recovery plan, you can
have a standby Azure VM restoring those backups on a regular schedule (see the As a
backup-restore target section later in this chapter). You can even configure your Azure
Storage account to have a geo-redundant replica in a secondary region, which provides
even greater redundancy.

How to back up to a URL

To back up to a URL, you first need an Azure Storage account and container. The
container must be set to private (the default) to ensure authorized access only. Then,
you will create a Shared Access Signature (SAS) in the Azure portal to allow access to
that container. Inside SQL Server, you will create a credential that uses that SAS when
performing the actual backup and restore tasks.

Once you have a Storage account, container, and credential, you will then choose a
blob type. With the SAS credential, you will choose the block blob type. If your backup
exceeds 200 GB in size, you can use backup compression and striping to back up larger
databases.

https://bit.ly/2LUVUaW

160 | Hybrid scenarios (Microsoft SQL IaaS)

To get the best performance out of Backup to URL, Microsoft recommends using the
following arguments:

• BLOCKSIZE = 65536 (65,536)

• MAXTRANSFERSIZE = 4194304 (4,194,304)

Now let's dive into the main section of this chapter, namely SQL Server on Azure VMs.

Use cases for SQL Server on Azure VMs
This section will demonstrate ways to leverage Azure VMs running SQL Server in a
hybrid scenario, for scalability, migration, and disaster recovery.

As we mentioned previously in this book, SQL Server 2019 runs on both Windows and
Linux, with almost complete feature parity between the two operating systems. You
will access SQL Server on Linux using the same set of tools, and many of the common
tools for scalability, migration, and disaster recovery, including backup and restore,
log shipping, consistency checks, transactional replication, and so on. Even availability
groups can be leveraged in a hybrid environment using an asynchronous commit.

The following sections present three sample use cases for Azure VMs in a hybrid
environment:

• As a backup-restore target

• As an availability group replica

• As a transactional replication subscriber

The important thing to remember here is that a technology or feature doesn't have
a single use. Each sample can be used for read scalability, database migration, and
disaster recovery. It is worth mentioning that these methods should be considered
read-only where your on-premises instance is the single version of the truth. In other
words, the data flows in one direction.

As a backup-restore target

You can keep a standby server in sync by restoring transaction log backups for one or
more databases on a regular schedule. There is already a feature built into SQL Server
called Log Shipping, which uses a shared network location to transfer regular backups
between servers on the same network and restores them on a schedule. Using those
same principles, you can achieve the same outcomes with an Azure VM as your target.
You just need to ensure that the transaction log backups are securely copied to a shared
location, where the standby server is waiting to pick them up and restore them in the
correct order.

Use cases for SQL Server on Azure VMs | 161

When leveraging an Azure VM as a standby server, you can back up your transaction
logs to a URL, which stores those files in your Azure Storage account. After a successful
backup, you can generate a T-SQL restore script from the backup history in your
on-premises msdb database, and transfer that script to the same storage account (using
a synchronization tool like AzCopy inside a PowerShell script, for example). On the
Azure VM side, you will retrieve the T-SQL script on a schedule, also using AzCopy, and
then run the script that restores the databases directly from Azure Storage.

Backup-restore is a cost-effective way to get your on-premises database to synchronize
with a standby server, and it works on any edition of SQL Server. Keep in mind that all
connections to the restoring database will be dropped when the next transaction log is
restored.

As an availability group replica

While Always On availability groups provide a high availability solution to ensure
that your environment has minimal downtime, they are not best suited to sharing a
workload between your on-premises Windows instance and an offsite replica (running
on Windows or Linux). For this, you would use either one or more clusterless replicas,
or an entire distributed availability group, in combination with ADR.

A clusterless availability group replica is kept mostly in sync using the asynchronous
commit mode. Depending on network latency and throughput, you may find that
your VM is able to keep up with your workload. If it falls behind, you can monitor this
according to the requirements of your SLA.

If you want more redundancy, with the understanding that this is still not a high
availability scenario, you can build a distributed availability group with multiple nodes
in its own availability group. Your on-premises primary replica will send data to the
distributed availability group via the forwarder, which is the primary replica in the
distributed availability group.

Note

You can read more about distributed availability groups from Microsoft Docs7.

https://bit.ly/2Ac3sna

162 | Hybrid scenarios (Microsoft SQL IaaS)

As a transactional replication subscriber

A third option is transactional replication, which shares your workload between your
on-premises environment and SQL Server on an Azure VM at the individual table level.
You set up a publication and distributor on-premises and have the Azure VM as the
subscriber. You define which tables will be synchronized, and let replication keep your
databases in sync. This flexibility allows you to point end-users to the new Azure VM
for read-only purposes, thereby scaling out your environment without the expense of
scaling up your on-premises infrastructure.

The two types of SQL Server replication supported by both Windows and Linux are:

• Transactional replication: Best for servers that are in constant communication
and need to deliver data downstream all the time. Data flows from the primary
database (distributor) to one or more secondary databases (subscribers) elsewhere.
Remember to ensure that your replication environment is appropriately licensed.

• Snapshot replication: Used for creating the original snapshot before transactional
replication takes over and is useful when you need to perform a refresh of the
entire data set.

Note

Peer-to-peer transactional replication and merge replication are
not supported on Linux. If you require bi-directional sync, your publisher and
subscriber should both use Windows Server. For more information about SQL
Server replication, refer to this Microsoft documentation8.

SQL Server on Linux supports Active Directory (AD) authentication, which means that
AD is supported with replication. Provided that the appropriate network ports are open
on the Azure VM firewall (and associated Azure Network Security Group), SQL Server
does not care whether the underlying operating system is Windows or Linux.

Note

You can follow a detailed walkthrough for setting up replication on Linux at
Microsoft Docs9.

https://bit.ly/3bWtqbm
https://bit.ly/3c1mSrV

Hybrid scenarios | 163

Hybrid scenarios
Taking what you've learned from this book up to this point, including the earlier parts
of this chapter, you can start to build a picture in your mind of how SQL Server on an
Azure VM can help you with creating a hybrid solution at any scale.

Whether for read-scalability, migration, or disaster recovery, you can run your
on-premises SQL Server instance on Windows Server and have the same workload in
SQL Server on an Azure VM at the same time.

Keep in mind that with Software Assurance, the free passive SQL Server replica can be
used to synchronize with your primary replica (using asynchronous commit and manual
failover) and run these maintenance operations:

• Database consistency checks

• Full and transaction log backups

• Monitoring resource usage data

Additionally, you can run disaster recovery testing every 90 days with primary and
disaster recovery replicas running simultaneously for brief periods.

Should you desire additional operations for your replica, including synchronous commit
and automatic failover, your secondary disaster recovery replica must be appropriately
licensed. With Azure Hybrid Benefit, for example, you can have a failover secondary in
synchronous commit mode with automatic failover.

Scenario 1: Read scale workloads

You have an on-premises SQL Server database located on the West Coast of the United
States and customers all over the world: Johannesburg, Toronto, Seoul, London, and
Sydney. Your customers want to query the database for reporting and analysis, but they
are complaining about performance introduced by network latency.

As the DBA, you notice performance issues on your production server due to locking
and blocking. If you could somehow offload that workload into a read-only copy
of the data that is closer to them, you could free up resources in your production
environment.

164 | Hybrid scenarios (Microsoft SQL IaaS)

This is a typical read-scale scenario. Using the customer distribution above, you can
place Azure VMs running SQL Server on Windows or Linux in the regions closest to
your customers, for example, West US (for customers closest to you), South Africa
North, Canada Central, Korea South, UK South, and Australia East.

Note

You can see all available Azure regions at this Microsoft documentation10.

You can use all three use cases described in the previous section, with the following
provisions:

• Backup-restore: Customers will be unable to connect during a restore process.
To ensure a better user experience, use ADR to speed up the rollback portion of
the restore process, and add retry logic to your application code to work around
disconnections.

• Readable secondary replica: Queries on the readable secondary might impact
performance on the primary replica and vice versa.

• Transactional replication: Each table that will be replicated must be configured
individually, but the benefit is that you only need to replicate the tables that are
needed for read scalability. You are trading more configuration up front at the
publisher and subscriber level, against more granular access to the data for your
customers.

In fact, you could use a combination of all three, because customers in each location
may have different requirements. You have a lot of flexibility with read-scale workloads,
and a hybrid Azure infrastructure is well-suited to this scenario.

https://bit.ly/2WZvf2S

Hybrid scenarios | 165

Scenario 2: Migrating a workload

Assume you are preparing to lift and shift an on-premises database or instance to SQL
Server on an Azure VM.

You may think that the easiest way to move a database from one server to another is by
detaching the database, moving or copying the files to the new server, and reattaching
them; however, if you move the files, there is no way to roll back if the reattach fails.
So always (always!) ensure that you have a valid, tested, full SQL Server backup of your
database.

Note

Read more about detaching and attaching databases at Microsoft Docs11.

Irrespective of whether you restore or reattach the database, and depending on the
version of SQL Server at the other end, the internal system tables will be automatically
upgraded to that build. Once the database is brought online again, you can continue
using it.

Both backup-restore and detach-attach require downtime. With techniques like
log shipping, clusterless availability groups, or even replication, you can reduce the
downtime dramatically.

We'll cover ways to keep your primary database up for as long as possible before cutting
over to the new server, which also makes it easier to roll back if something goes wrong.

In this scenario, you can use two of the use cases described in the previous section,
with the following provisions:

• Backup-restore: This use case requires some downtime while failing over to the
new environment. You should plan a maintenance window to cut over to the new
VM and allow time for data consistency checks, DNS migrations (see the note on
TTL earlier in this chapter), and updating application connection strings.

• Distributed availability group: Instead of having a read-only replica, you will
create a new distributed availability group. During a planned maintenance
window, you will wait for any outstanding transactions to synchronize to the
new availability group, then update application connection strings to point to the
new availability group listener. The advantage is that the new availability group is
already highly available.

https://bit.ly/2LXCWQV

166 | Hybrid scenarios (Microsoft SQL IaaS)

SQL Server replication is not recommended for a migration scenario. While peer-
to-peer transactional replication and merge replication both offer bi-directional
synchronization, those benefits are outweighed by the complexity and lack of flexibility
at a database level.

Note

You can use Azure Site Recovery for migrating a workload to Azure, but you must
plan your failover during a maintenance window, and your target operating system
must match your on-premises environment. You cannot use Azure Site Recovery to
fail over from Windows to Linux. Visit Microsoft Docs12 for more information.

Scenario 3: Disaster recovery

Your disaster recovery plan is defined by the organization's SLA, and that SLA is guided
by how much money the organization is prepared to spend, along with the resources it
has available to perform the recovery. Your solution might be as simple as a PowerShell
script that creates an Azure VM on the fly and restores the databases from a shared
location like Azure Storage.

Or, as we've demonstrated in this chapter, you can dramatically reduce the RTO by
having a standby server ready to go, which is kept as up to date as possible in an
automated way, using backup-restore, clusterless replicas, distributed availability
groups, Azure Site Recovery, or even replication. This way, when disaster strikes, you
have much less to worry about. Even so, it is always worthwhile having a Plan B (where
B stands for "backups"), where you can restore your databases no matter what.

Note

As mentioned throughout this chapter, using the same features to achieve
different goals is common in SQL Server.

Should an unplanned failure occur and the potential data loss due to latency is within
your RPO, you can be up and running on your new server in seconds or minutes,
especially with ADR enabled.

https://bit.ly/3gkxkOx

Summary | 167

In this final scenario, you can use two of the use cases described in the previous
section, plus a bonus option:

• Backup-restore: This can be used to keep your database in sync in the event
of a disaster. Whether you use the built-in log shipping configuration or roll
your own solution, SQL Server can keep restoring your log backups on a regular
schedule, such that the amount of data you can afford to lose (defined by the RPO)
is protected by the frequency of log file restores on your Azure Linux VM. With
cost-effective monitoring in place, you can keep track of how far behind the target
database is. With ADR, recovery time is dramatically reduced, especially for long-
running transactions.

• Clusterless replica or distributed availability group: You can reduce your RTO
by having either a distributed availability group or a clusterless availability group
replica on standby, keeping in mind that RPO. You can also keep track of the
synchronization state using built-in monitoring features of SQL Server. You can
even use the same underlying SQL Server instance that you configured for read
scalability. The server can be readily failed over to a primary availability group in
the event of a disaster. In the case of a distributed availability group, you are failing
over to a highly available solution.

• Azure Site Recovery: This is primarily a disaster recovery solution, where physical
servers and VMs running on VMware or Hyper-V can be replicated to a secondary
site. Applications and workloads supported include SQL Server. This is the
recommended disaster recovery solution for a hybrid infrastructure.

Note

You can read more about SQL Server support in Azure Site Recovery on
Microsoft Docs13.

Summary
Building a hybrid infrastructure leveraging Azure services that support your
on-premises environment is straightforward. Whether for scalability, migration, or
disaster recovery, an Azure VM running SQL Server works the same way on Windows
or Linux, with the benefit of reduced OS licensing costs when considering Linux. With
software assurance and Azure Hybrid Benefit, you can reduce your costs further by
leveraging this Azure VM as a standby server using some of the techniques discussed in
this chapter.

https://bit.ly/2XvLl3u

168 | Hybrid scenarios (Microsoft SQL IaaS)

Chapter links
1. https://bit.ly/36vt762

2. https://bit.ly/3d3W9wg

3. https://bit.ly/2XyofcB

4. https://bit.ly/2yy72HH

5. https://bit.ly/2ZyWvqN

6. https://bit.ly/2LUVUaW

7. https://bit.ly/2Ac3sna

8. https://bit.ly/3bWtqbm

9. https://bit.ly/3c1mSrV

10. https://bit.ly/2WZvf2S

11. https://bit.ly/2LXCWQV

12. https://bit.ly/3gkxkOx

13. https://bit.ly/2XvLl3u

https://bit.ly/36vt762
https://bit.ly/3d3W9wg
https://bit.ly/2XyofcB
https://bit.ly/2yy72HH
https://bit.ly/2ZyWvqN
https://bit.ly/2LUVUaW
https://bit.ly/2Ac3sna
https://bit.ly/3bWtqbm
https://bit.ly/3c1mSrV
https://bit.ly/2WZvf2S
https://bit.ly/2LXCWQV
https://bit.ly/3gkxkOx
https://bit.ly/2XvLl3u

Appendix A

>
SQL Server Configuration with OLTP
In online transaction processing (OLTP) workloads, much of the workload is made
up of thousands of low-cost queries. When a query comes into SQL Server, the query
optimizer creates an execution plan for that query. The execution plan determines
how SQL Server will gather the data, such as which tables and indexes to use. It also
assigns an overall cost to each query regarding how much effort it will take to complete
that query. That query cost is known as the estimated subtree cost. SQL Server has a
method by which it determines which queries it will process in parallel and those that it
won't. It determines this by the cost threshold for parallelism (CTP) value.

172 | Appendix A

By default, the initial value set for CTP is 5. It is widely accepted that this value is too
low for most environments and should be increased to a higher value. The appropriate
value will ultimately depend on the workload running on the server. This can be
determined by looking at the cached plans of your parallel queries. You'll be able to
review which queries are being executed in a parallel manner and their execution
counts. By reviewing these, you'll be able to determine what the value should be to
force the more trivial plans to not be parallel and to allow your more expensive queries
to take advantage of parallelism. Usually, a starting value of between 25 and 50 is an
acceptable range. However, there are organizations that need a much higher value.

OLTP workloads can also generate many single-use ad hoc queries. Single-use ad hoc
queries can bloat the plan cache, wasting valuable memory. Enabling the optimize for ad
hoc workloads option on the server will store a small compiled plan stub rather than the
entire execution plan. If the ad hoc query is executed again, the full compiled plan will
be stored in the plan cache. In heavy OLTP workload environments where the optimize
for ad hoc workloads option is not enabled, you could see several GB of memory wasted
storing single-use plans.

Auto growth sizes for user databases should be configured for both data and log files to
a fixed size rather than percentage. If a database is growing rapidly, you don't want it to
have to grow by many small increments. Setting an appropriate initial size for the data
and log file with a fixed size auto growth value helps prevent SQL Server from having
to pause, grow, and resume each time the data and log files need to grow. Although the
process is very quick, an excessive number of growths per day can impact the server.

Backup compression can also cut down on the time it takes to back up and restore a
database. Backup compression does consume additional CPU, but most large backups
(full and differential) are scheduled to run during non-peak times. The benefit of faster
backups and restores usually negates any additional CPU load. Compressed backups
also take up less space, which can save on storage costs. Backup compression can be
enabled for the entire instance or specified at the time the backup is made using the
WITH COMPRESSION command.

SQL Server databases encounter index fragmentation due to updates, inserts, and
deletes. Index fragmentation is the result of data being moved around, leaving behind
free space in the data pages. When SQL Server reads those pages, the empty space is
also retrieved, which wastes space in the buffer pool. SQL Server must also scan and
read more pages than it should if the data wasn't as fragmented.

SQL Server Configuration with OLTP | 173

For example, since SQL Server stores data on 8k pages, if those pages were 100% full
and a table had 100 pages, after a number of updates, inserts, and deletes, those tables
would become fragmented. That same data may now be spread across 125 pages that
are only 75% fragmented. SQL Server would now have to scan 125 pages of data rather
than the original 100. To control index fragmentation, regular index maintenance needs
to be performed.

Index fragmentation can be remediated by performing index rebuilds or
reorganizations. Index rebuild drops and recreates the index. For indexes with high
levels of fragmentation, this could be a less expensive operation than reorganizing.
Index rebuilds can be an online operation for Enterprise Edition, but it is an offline
operation for Standard Edition, meaning that on Standard Edition, when the index is
rebuilt, it is not available.

An index reorganization uses fewer system resources and is an online operation, making
it the preferred method for Standard Edition instances for 24/7 workloads. You can
automate index fragmentation by using SQL Server database maintenance plans, which
can be configured to either rebuild or reorganize indexes based on fragmentation levels.
There are also third-party tools and scripts available to address index fragmentation.

An index rebuild will update statistics for the table or indexed view. Statistics are used
by the query optimizer to generate execution plans. Having up-to-date statistics can
greatly improve query performance. By default, auto-update statistics are enabled on
the SQL Server instance. Depending on the workload and size of the environment,
statistics may not be updated frequently enough to ensure that queries are being
compiled with current statistics. Creating an automated process to manually update
statistics on a regular basis can ensure that the query optimizer has more up-to-date
statistics to create more efficient plans. This is a problem that many organizations don't
know they have, and the fix is simple.

Organizations relying on index fragmentation processes that rebuild and reorganize
indexes based on fragmentation levels could be an issue. This is because index rebuild
statement updates statistics, but an index reorganization does not. If an index in that
environment never reaches the threshold to be rebuilt, the statistics would not be
updated until they hit the auto update statistics threshold, which may not be soon
enough. Organizations that are using a process to reorganize or rebuild indexes based
on fragmentation levels should also have a process in place to update statistics.

174 | Appendix A

Use the latest compatibility level for your databases when possible. This will ensure
that you are utilizing the most up-to-date cardinality estimator for your version of SQL
Server, as well as any features or functionality that are tied to that compatibility level.
Compatibility levels are not automatically adjusted when you upgrade from one version
to another for user databases. You must make this change manually.

Database corruption can happen. SQL Server includes a set of database console
commands for administration tasks. DBCC CHECKDB is one of those commands. DBCC
CHECKDB should be run periodically to check for any corruption that may have occurred.
If a non-clustered index gets corrupted, you can simply drop and recreate the index.
However, if the corruption is on a heap, clustered index, or system table, a database
restore is most likely the only fix. You want to ensure that your backup retention and
the interval for running DBCC CHECKDB provides adequate backups for you to be able to
respond and restore data with any loss.

For example, imagine a scenario in which you only run DBCC CHECKDB once a week. You've
also opted for just 7 days of backup retention. If the database were to be corrupted just
after a DBCC CHECKDB was scheduled, then there would be almost 7 days to wait before the
check would run again. This means that due to the fact you only have 7 days of backup
retention, almost the entirety of your backup would be corrupted before another scan
would detect the corruption and allow you to respond. A good policy would be weekly
checks and at least 30 days of backup retention. Unfortunately, too many organizations
find out too late that they have a problem and encounter data loss.

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
activate: 64
advantage: 5, 30, 68, 89,

117, 119, 122, 130, 144, 165
allocate: 69, 116
auditing: 14, 88-89
automation: 3, 5, 73,

83, 98-99, 129, 135

B
back-end: 62, 96
backup: 5, 30, 58, 64,

70, 84, 107, 134,
136-139, 141-143,
153-157, 159-161, 165

balancer: 58, 60,
62, 80, 107

bandwidth: 66-67,
69, 73, 116

bitlocker: 88
blobcache: 113, 121-122
blocksize: 70, 160

C
caches: 114
checkdb: 155
clustering: 61-62
cmdlets: 155, 159
compute: 8, 59, 67-68,

102, 114, 117-118, 135, 158
configure: 6-7, 17-19, 21,

34, 36-40, 46, 49, 58,
62, 64, 69, 78, 80-81,
86, 115, 121, 125, 133,
140, 142-143, 159

container: 4, 8, 15,
101-107, 159

-cores: 119

D
dashboard: 73, 141
databases: 3, 5-6, 8, 15,

49, 53, 59, 68, 70, 72,
78, 82, 101, 114, 127,
129, 131, 134, 138-143,
148, 150, 155-156,
159-162, 165-166

datacenter: 7, 17,
55-57, 79, 101, 154

dbatools: 130, 135
deployment: 4, 6, 30-31,

40, 53, 56, 64, 98-100,
102, 105-107, 114,
118, 137, 145-149

devops: 31, 98, 102
django: 96
docker: 4, 15, 98, 101, 104
domain: 30, 81, 142
downtime: 43-44, 55,

129, 134, 139, 161, 165

E
encrypted: 14, 81,

84, 86-88, 132
enterprise: 6, 15-16, 32,

36, 38, 40-41, 67, 86,
100-103, 106-107,
117, 137, 154, 158

F
failover: 12, 14, 36,

58, 61-62, 107,
157-158, 163, 166

filegroup: 72
filestream: 20
filesystem: 101, 121
filetable: 20

firewall: 80, 162
framework: 12, 94-96

G
gateway: 18, 80
github: 97
groups: 7, 14, 17, 30,

44, 57-63, 75, 78-79,
101, 134, 145, 154,
160-161, 165-166

H
hadoop: 11
hybrid: 13, 17, 30, 40-41,

64, 77-78, 80, 107,
143, 147, 149-150,
153-154, 156-158,
160, 163-164, 167

hyperscale: 8
hyper-v: 167
hypervisor: 29, 44

I
iaas-based: 23, 30, 49
images: 15, 32-33,

36-37, 41, 67, 100-103,
106, 119, 121

indexes: 9, 14, 77, 117, 120
instance: 4, 6-9, 15-16,

18, 22-23, 30, 36-37,
43, 59, 102, 104, 106,
119-120, 126, 150,
160-161, 163, 165, 167

K
kerberos: 81
kubernetes: 4, 105-106

L
latchless: 77
latency: 57, 61, 68, 70,

115, 118, 120, 122,
143, 161, 163, 166

libraries: 94-95, 101
license: 18, 20, 23,

36, 40-41, 64, 114,
118, 154, 158

lifecycle: 145
logical: 45, 56, 116, 131, 141

M
machine: 6, 11-12,

15, 19, 35, 53, 86,
95, 115, 118, 135

memory: 13, 42-44, 46,
49, 67, 69-70, 86, 88,
107, 114-118, 121-122

method: 4-6, 22, 30-33,
53, 81, 116, 144, 155

microsoft: 2-3, 5, 7, 9,
11-12, 14-15, 17-19, 23,
29-32, 38-41, 43, 55,
62, 67, 69, 77, 94-99,
101, 103-104, 106, 118,
125, 128-130, 144-145,
149-150, 153-154, 156,
158-162, 164-167

models: 5, 12, 23,
41, 95, 137, 155

mssql-cli: 98
mssql-conf: 121
mystorage: 70

N
native: 137, 144, 148, 155
network: 2, 40, 44, 56-57,

61-62, 67, 73, 78-81,
89, 95, 102, 107, 114,
116, 138, 140, 160-163

nvarchar: 12

O
openshift: 106
optimize: 66-67,

108, 113, 117, 121
oracle: 11, 53

P
package: 7, 9, 101
password: 36, 81, 84, 104
patching: 2, 5, 30,

40, 64, 78, 106
persistent: 13, 104
pipelines: 98-99, 102, 149
platform: 1-6, 8-9, 11,

15, 18-19, 22-23, 31,
53-55, 94-95, 97-100,
102-103, 105-106,
108, 127, 129-130,
133, 137, 148-149

portal: 18, 31-35, 41,
48, 56, 62, 65-67,
72-73, 78-79, 99,
114-115, 141, 159

powershell: 31, 33, 62, 67,
98-99, 135-136, 138,
141, 155, 159, 161, 166

premises: 16, 29
procedure: 138
processing: 4, 7, 11-13,

57, 77, 88, 95, 117
profiling: 12
protocol: 79, 81
provider: 1, 5, 30, 36,

38-39, 54, 63, 66-67
python: 12, 15, 53, 94-95

R
read-only: 62-63, 66,

160, 162-163, 165
read-scale: 61, 63, 164
readwrite: 121
recovery: 13-14, 17, 30,

41, 55, 58-60, 62-64,
107, 126, 137, 145, 150,
153-160, 163, 166-167

region: 9, 32, 43, 55-59,
61, 88, 107, 159

replica: 41, 59-60,
62-64, 154, 159-161,
163-165, 167

repository: 149
rollback: 13, 157, 164
row-level: 14, 88
rowstore: 13-14
runbook: 73
runtime: 71, 96, 120, 149

S
scaling: 8, 107, 162
schedule: 7, 78,

159-161, 167
schemas: 133
scripts: 5, 53, 58,

84, 120, 135
security: 3, 6-8, 14, 30-31,

40, 49, 54, 62, 78-82,
84, 86, 88-89, 95, 107,
144, 148-149, 162

sequelize: 96
server: 1-23, 29-41, 43, 45,

48-49, 53-54, 57-84,
86-89, 93-108, 113-122,
125-128, 130-132,
134-135, 137-146,
148-150, 153-167

serverless: 8, 105-106
shipping: 59, 134,

139-141, 160, 165, 167
sqlcmd: 36, 98, 155
sqlserver: 32
storage: 3, 7, 9, 11, 16,

18-19, 23, 34, 42, 44-49,
55, 58-59, 62, 64-70,
72, 74-75, 77, 80, 84, 101,
104, 107, 114-119, 121-122,
137-139, 154-155,
158-159, 161, 166

subnet: 79-80
supported: 4-5, 9, 12,

19-20, 23, 30, 37-38, 40,
58, 66, 83, 96, 100-102,
125, 143, 162, 167

synapse: 4

T
tempdb: 8, 13, 49, 66, 68,

70, 77, 86, 119, 122, 157
throughput: 44, 47,

49, 66, 114-116, 118,
120, 122, 128, 161

toolkit: 129-131
two-factor: 3

U
ubuntu: 6, 32, 38,

100-104, 106
unicode: 12
uninstall: 36
update: 6, 55, 57-58,

64, 69, 144-145, 165
upgrade: 11, 17, 72, 101, 114
utility: 98

V
version: 3, 5-8, 11, 13,

15-16, 19, 22, 30,
33, 37, 101-102, 120,
131-132, 144, 160, 165

vmware: 167
vscode: 97

W
warehouse: 117
windows: 4, 6, 15, 18-23,

29, 31-38, 40-41, 45,
48, 61, 64, 68-70, 74-75,
77-78, 81, 83, 86, 88,
94, 96, 98, 106, 114-115,
120, 131, 135, 137, 153,
160-164, 166-167

workflows: 99
workload: 6, 23, 43,

46-48, 56, 66, 107,
113-119, 122, 126-129,
131, 133-134, 144, 153,
158, 161-163, 165-166

	Cover
	FM
	Table of Contents
	Foreword
	Preface
	Chapter 1: Introduction to SQL Server on Azure Virtual Machines
	Introduction
	The Azure SQL portfolio
	SQL Server on Azure Virtual Machines
	Azure SQL Managed Instance
	Azure SQL Database
	SQL Server in Azure comparisons

	SQL Server 2019 highlights
	Intelligence over all of your data
	Enhancements in developer experience
	Performance enhancements
	Security improvements
	High Availability/Disaster Recovery (HADR)
	Platform of choice

	SQL Server IaaS scenarios and use cases
	Lift and Shift
	Extending your on-premises environment to the cloud
	Development and test environments

	Choosing an OS for SQL Server in Azure VMs
	Reasons to choose either Windows or Linux for SQL Server
	Differences between SQL Server on Linux and Windows

	Summary
	Chapter links

	Chapter 2: Getting started with SQL Server on Azure Virtual Machines
	The benefits of deploying SQL Server using IaaS
	Deployment choices for IaaS
	Deployment methods
	Common Azure VM deployment considerations for SQL Server
	Licensing SQL Server in Azure

	Azure VM hardware options
	VM types and sizes
	Storage

	Summary
	Chapter links

	Chapter 3: Hero capabilities of SQL Server on Azure Virtual Machines
	Understanding platform availability in Azure
	Availability Zones
	Availability sets

	Disaster recovery options for SQL Server in Azure
	Beyond backups
	Always On availability groups
	Differences with availability groups in Azure
	Availability groups for read-scale workloads
	SQL Server on Azure VM resource provider
	Performance optimized storage configuration

	SQL Server performance in Azure VMs
	Azure Storage
	Disk layout for SQL Server on Azure
	Backups
	Gathering performance information
	Query Store
	Azure portal
	Activity Monitor
	Extended Events
	Identifying disk performance issues with SQL Server
	Key performance features in SQL Server

	Security concepts
	Connecting to Azure VMs
	Network security groups
	Azure Security Center
	Authentication
	SQL Server security
	Advanced data security for SQL Server on Azure VMs
	Azure Active Directory
	Azure Key Vault
	Transparent data encryption
	Always Encrypted
	Dynamic data masking
	Azure Disk Encryption
	Auditing
	Data Discovery and Classification

	Summary
	Chapter links

	Chapter 4: SQL Server on Linux in Azure Virtual Machines
	SQL Server on the Linux development ecosystem
	Open-source development frameworks and tooling for SQL Server on Linux in Azure Virtual Machines
	The extensibility framework and language extensions
	Object-relational mapping (ORM) frameworks
	Cross-platform tooling
	Graphical tools
	Command-line tools

	Platform deployment and management for SQL Server in Azure
	Supported base operating systems for running SQL Server on Linux in Azure IaaS VMs
	Using an Azure Marketplace image with SQL Server on Linux pre-installed
	Using a Linux Azure Marketplace image and installing SQL Server on Linux manually
	Container-based deployments for SQL Server on Linux in Azure
	Running multiple SQL Server containers on an IaaS VM in Azure
	Container images available for SQL Server on Linux
	Starting a container running SQL Server on Linux
	Deploying SQL Server in containers in Azure

	So many choices: which platform should you choose?
	Which base operating system?
	How should you choose between containers and VMs?
	Why should you do this in Azure?

	Summary
	Chapter links

	Chapter 5: Performance
	Performance best practices
	Virtual Machine Storage
	Memory
	CPU
	SQL Server configuration
	Dynamic management views (DMVs) and Query Store

	How to optimize SQL Server on Linux
	Azure BlobCache
	Summary
	Chapter links

	Chapter 6: Moving workloads to SQL Server on Azure Virtual Machines
	Migration tools and best practices
	Best practices
	Migration and analysis tools
	Migrating databases to the cloud

	Application considerations
	Reporting in the cloud—Power BI
	Summary
	Chapter links

	Chapter 7: Hybrid scenarios (Microsoft SQL IaaS)
	What is Azure Hybrid Benefit?
	What is disaster recovery?
	Recovery point objective
	Recovery time objective
	Accelerated database recovery
	How does licensing influence disaster recovery?

	Backing up databases to a URL
	How to back up to a URL

	Use cases for SQL Server on Azure VMs
	As a backup-restore target
	As an availability group replica
	As a transactional replication subscriber

	Hybrid scenarios
	Scenario 1: Read scale workloads
	Scenario 2: Migrating a workload
	Scenario 3: Disaster recovery

	Summary
	Chapter links

	Appendix A
	Index

